Pollen-Climate Transfer Methods

Characterization of StatisticalUncertainty, and ForwardModeling for Integration into Bayesian Hierarchical Climate Reconstructions

XVIII. INQUA Congress
20-27 July 2011, Bern, Switzerland

Christian Ohlwein1 and Eugene Wahl2

1) Meteorological Institute at the University of Bonn, Germany
2) National Oceanic and Atmospheric Administration (NOAA), Boulder, CO, USA
Requirements
Requirements

Physical understanding of the climate system

- Complex proxy-climate relation
- Spatio-temporal processes
- Multiple proxy variables
- Various sources of uncertainties
Objectives & Outline

1. Introduce recent spatio-temporal multi-proxy Bayesian Hierarchical Models (BHM)
2. Link known pollen-climate transfer concepts to BHM framework
3. Discuss the aspect of uncertainty
Bayesian Hierarchical Models

1. Introduce recent spatio-temporal multi-proxy BHM approaches

Random variables

Proxy variables P
Climate variables C
Parameters Θ

Multi-proxy BHM approaches
(Li et al., 2010; Tingley and Huybers, 2010)

$$[C, \Theta | P] \propto [P | C, \Theta] \cdot [C | \Theta] \cdot [\Theta]$$

posterior data process prior

Advantages

- Model complexity through hierarchy
- Spatio-temporal processes
- Account for various sources of uncertainties

BHM Example (DAG)
Pollen-climate transfer concepts

2. Link known pollen-climate transfer concepts to BHM framework

Pollen realism in $[P|C, \Theta]$
- (Parametric) probability distributions
- Computational limitations

Known transfer concepts
- Focused on the palaeo archives \leadsto complex, mechanistic
- Vast knowledge of the bio-geochemical processes

Rewrite in terms of $[P, V|C, \Theta] = [P|V, \Theta] \cdot [V|C, \Theta]$
- Regression methods
- Indicator taxa and mutual climatic range (MCR)
- Modern analogues (MAT)
- Plant functional types and biomisation (PFT)
Modern analogue technique

2. Link known pollen-climate transfer concepts to BHM framework

Modern analogue technique (MAT)

- Pollen \(\xrightarrow{\text{metric}} \) analogue \(\xrightarrow{\text{direct}} \) climate
- Relates to draws from a multinomial distribution
Pollen-ratio model

- Reduced complexity MAT \(\sim \) 2 taxa
- Temperature as covariate
- Logit link with binomial error (GLM)

Probabilistic reconstruction

- Sample GLM parameters (MCMC)
- Sample from pollen counts
- Reconstruction as sample via inverse model
3. Discuss the aspect of uncertainty

Single-site reconstruction for one of three nearby lakes in Wisconsin, USA
Pollen-ratio model

3. Discuss the aspect of uncertainty

Ensemble reconstruction for three nearby lakes in Wisconsin, USA
Summary

1. Introduce recent spatio-temporal multi-proxy BHM approaches
 - Versatile framework for a more complete picture of past climate
 - Conditional probability densities

2. Link known pollen-climate transfer concepts to BHM framework
 - Derived from classical methods (MCR, MAT, . . .)
 - Example of the pollen ratio model

3. Discuss the aspect of uncertainty
 - Account for as many random effects as possible
 - Pollen proxies and the assumption of ergodicity
 - Uncertainties most likely to be often underestimated

~~ Review of probabilistic pollen-climate transfer methods (Ohlwein and Wahl, in review)
Pollen-Climate Transfer Methods

Characterization of Statistical Uncertainty, and Forward Modeling for Integration into Bayesian Hierarchical Climate Reconstructions

XVIII. INQUA Congress
20-27 July 2011, Bern, Switzerland

Christian Ohlwein1 and Eugene Wahl2

1) Meteorological Institute at the University of Bonn, Germany
2) National Oceanic and Atmospheric Administration (NOAA), Boulder, CO, USA
References

- Piecing Together the Past: Statistical Insights into Paleoclimatic Reconstructions
 (Tingley et al., 2010)

- A Bayesian Algorithm for Reconstructing Climate Anomalies in Space and Times
 (Tingley and Huybers, 2010)

- The value of multi-proxy reconstruction of past climate
 (Li et al., 2010)

- Reconstruction of Quaternary temperature fields by dynamically consistent smoothing
 (Gebhardt et al., 2007)

- Review of probabilistic pollen-climate transfer methods
 (Ohlwein and Wahl, in review)