Multivariate Non-Normally Distributed Random Variables
An Introduction to the Copula Approach

Workgroup seminar on climate dynamics
Meteorological Institute at the University of Bonn
18 January 2008, Bonn

Christian Schölzel1(2) and Petra Friederichs1

1) Meteorological Institute at the University of Bonn
Bonn, Germany

2) Laboratoire des Sciences du Climat et l’Environnement (LSCE)
Gif-sur-Yvette, France

E2C2: Extreme Events, Causes and Consequences
Motivation
Multivariate non-normally distributed random variables

Interest
Estimating multivariate probability density functions

Problem
At least one component might be
- precipitation
- wind speed and direction
- relative humidity
- cloud cover
- …
- extremes

Question
How to describe random vectors with non-normal marginals?
Background
General problem with multivariate random variables

Standard textbooks

... multivariate normal distribution

Marginal distributions

- numerous parametric descriptions

Dependence

- allows for more complexity
- degrees-of-freedom

... no canonical extension
Related Approaches
How has this problem been addressed so far?

Multivariate normal distribution
*) Not an option

True/native multivariate distribution
Best option, but often restricted in modeling marginals and dependence

Mixture models
Flexible w.r.t. covariance structure, complex in higher dimensions, no account for the original marginal distribution

Marginal and conditional pdf
Complexity of the estimation process grows exponentially

Multivariate KDE
*) Not a parametric description

Johnson distribution
Simple concept, limited dependence structure (precursor & special case)
The copula approach

A brief (and incomplete) historical overview . . .

1949: johnson distribution and other precursors
1959: the term copula has been introdced (Sklar)
2000: applications in econometry
2007: applications in hydrology
Assume a \(m \)-dimensional random vector \(\tilde{X} \) with marginal cumulative distribution functions \(F_{X_1}, \ldots, F_{X_m} \)

Definition copula
A copula \(C_{\tilde{X}} \) is a multivariate distribution with standard uniform marginal distributions

Sklar’s theorem (1959)
Every joint distribution \(F_{\tilde{X}} \) can be written as a function of its marginal distributions

\[
F_{\tilde{X}}(\tilde{x}) = C_{\tilde{X}}(F_{X_1}(x_1), \ldots, F_{X_m}(x_m))
\]

Note: \(C_{\tilde{X}} \) is a copula, since

\[
U_j = F_{X_j}(x_j) \implies U_j \sim \mathcal{U}(0, 1)
\]
Copula density
Furthermore, C_X is unique and can be expressed by

$$C_X(u_1, \ldots, u_m) = \int_0^{u_1} \cdots \int_0^{u_m} c_X(u_1', \ldots, u_m') \, du'_1 \cdots du'_m$$

with $u_j = F_{X_j}(x_j)$

Consequence of Sklar’s theorem
Every joint probability density can be written as

$$f_X(x) = f_{X_1}(x_1) \cdots f_{X_m}(x_m) \cdot c_X(u_1, \ldots, u_m)$$
Bivariate Examples
Normal-gamma and beta-beta marginals

Christian Schoelzel
Copula Families

Two major classes are **Elliptical copulas** and **Archimedian copulas**

Elliptical copulas
Derived from elliptical distributions

- Normal (Gaussian) copula *
- Student’s t-copula

Archimedian copulas
Base on so called *generator functions*

\[
C_{\bar{X}}(u_1, \ldots, u_m) = \phi^{-1}(\phi(u_1) + \cdots + \phi(u_m))
\]

- Clayton copula: \(\phi_C(u) = u^{-\theta_C} - 1 \)
- Frank copula: \(\phi_F(u) = \log\left(\frac{e^{\theta_F u - 1}}{e^{\theta_F - 1}}\right) \)
- Gumbel copula: \(\phi_G(u) = (-\log u)^{\theta_G} \)
Normal Copulas
Derivation based on Sklar’s theorem

Additional transformation

\[
U_j = F_{\bar{X}}(X_j) \sim \mathcal{U}(0, 1)
\]
\[
Z_j = F_{\mathcal{N}(0, 1)}^{-1}(U_j) \sim \mathcal{N}(0, 1)
\]
\[
\tilde{Z} = (Z_1, \ldots, Z_m)^T \sim \mathcal{N}(0, \Sigma)
\]

Normal copula
Sklar’s theorem leads to the copula

\[
C_{\bar{X}}(u_1, \ldots, u_m) = F_{\mathcal{N}(0, \Sigma)}(F_{\mathcal{N}(0, 1)}^{-1}(u_1), \ldots, F_{\mathcal{N}(0, 1)}^{-1}(u_m))
\]
and the copula density

\[
c_{\bar{X}}(u_1, \ldots, u_m) = \frac{\partial}{\partial u_1} \cdots \frac{\partial}{\partial u_m} \cdot C_{\bar{X}}(u_1, \ldots, u_m)
\]
\[
= \frac{f_{\mathcal{N}(0, \Sigma)}(F_{\mathcal{N}(0, 1)}^{-1}(u_1), \ldots, F_{\mathcal{N}(0, 1)}^{-1}(u_m))}{\prod_{j=1}^{m} \left(f_{\mathcal{N}(0, 1)}(F_{\mathcal{N}(0, 1)}^{-1}(u_m)) \right)}
\]
\[Z_j = F_{\mathcal{N}(0,1)}^{-1}(U_j) \]

\[U_j = F_{X_j}(X_j) \]

\[f_{\mathcal{N}(\Sigma,1)}^{-1}(\vec{X}_f) \]

\[C_{\vec{X}} \]

\[f_{\vec{X}} \]
Student t-Copula

A more flexible case of elliptical copulas

Student t-Copula

Based on an extension of the **multivariate t-distribution**

$$C_{\vec{X}} (u_1, \ldots, u_m) = F_{t(\nu, \Sigma)} (F_{t(\nu)}^{-1}(u_1), \ldots, F_{t(\nu)}^{-1}(u_m)),$$

Tail dependence

Definition of **upper tail dependence** (lower analogously)

$$\lambda_{\text{up}} = \lim_{u \nearrow 1} P \left(X_1 > F_{X_1}^{-1}(u) \mid X_2 > F_{X_2}^{-1}(u) \right)$$
Different Copulas
Dependence structure and upper/lower tail dependence

- Gaussian
- t-Copula
- t-Copula
- Elliptical family
- Clayton
- Frank
- Gumbel
- Archimedean family
Estimation
The aim is to fit the whole multivariate distribution

Full maximum likelihood (ML)
Maximize the log-likelihood functions for the full pdf f_X
- consistent estimates for all parameters
- often only numerically feasible

Inference functions for margins (IFM)
Two-stage estimation process (1. margins, 2. copula)
- computationally more efficient than ML
- predefined estimators for margins and copula
- no independent parameter estimates

Canonical maximum likelihood (CML)
Like IFM but use the empirical CDF of each margin instead
- consistent estimates of the copula parameters
- practical use questionable (see discussion)
Goodness-of-Fit
The probability integral transform (PIT)

Dimension reduction
Transform \(\tilde{\mathbf{X}} = (X_1, \ldots, X_m)^T \) to a set of independent, uniform variables

The probability integral transform (PIT)
The PIT of \(\tilde{\mathbf{X}} \) is defined as

\[
T_1(X_1) = F_{X_1}(X_1) \\
T_2(X_2) = F_{X_2|X_1}(X_2|X_1) \\
\vdots \\
T_m(X_m) = F_{X_m|X_1,\ldots,X_{m-1}}(X_m|X_1,\ldots,X_{m-1})
\]

Hypothesis \(\mathcal{H}_0 \)
\(\tilde{\mathbf{X}} \) comes from the specified multivariate model \((F_{\tilde{\mathbf{X}}}) \)

\[
Z_j^* = T_j(X_j) \overset{\text{iid}}{\sim} \mathcal{U}(0, 1)
\]
Goodness-of-Fit
The probability integral transform (PIT)

Dimension reduction
With the multivariate random variable (above)

\[Z_j^* = T_j(X_j) \overset{iid}{\sim} \mathcal{U}(0, 1) \]

it follows that

\[Y^* = \sum_{j=1}^{m} F_{\mathcal{N}(0, 1)}^{-1}(Z_j^*) \]

has a \(\chi^2 \)-distribution with \(m \) degrees of freedom, so that

\[W^* = F_{\chi^2_m}(Y^*) \]

should be a univariate random variable from \(\mathcal{U}(0, 1) \)

\[\cdots \text{ univariate GoF tests} \]
Applications
Precipitation and minimum temperature at stations Berlin and Potsdam

Example A: different random variables

Example B: different locations
Multivariate Extremes
How are copulas related to multivariate extremes?

Copulas are related to multivariate extremes

(later)
Capabilities

What are copulas good for?

The copula approach

- Simple and straightforward method to find parametric descriptions of multivariate non-normally distributed random variables

Characteristics

- Catch different dependence structures
- Keep proper parametric descriptions of the margins
- Low number of parameters

Mixture models (alternative and enhancement)

- More degrees-of-freedom
- Allow only approximative descriptions of the marginal distributions
- Limited in modelling tail dependence
- Based on the assumption of different populations

... mixture models and copulas can be combined
Limitations
What are typical pitfalls?

Limitations

- Limited to the existing copula families
- No general procedure for selecting the copula class

Pitfalls

Questionable practices in finance, risk management, or insurance

- Theoretical value of the copula must not be exaggerated
- There is no dependence separately from the marginal distributions
- Copulas do not solve the problem of dimensionality
Outlook
Where to go?

Outlook
After numerous successful applications in risk management, financial research and more recently in hydrology, it is very likely that copulas will have growing impact in meteorology and climate research
1. **Introduction**
 - Motivation
 - Background and Related Work

2. **The Copula Approach**
 - Basics
 - Copula Families
 - Estimation
 - Goodness-of-Fit

3. **Applications**

4. **Multivariate Extremes**

5. **Discussion**
 - Capabilities
 - Limitations
 - Outlook

►► **Appendix**

Christian Schoelzel