

Ju-Yu Chen / Raquel Evaristo

Institute of Geosciences, Department of Meteorology, University of Bonn

16. May. 2023

RealPEP meeting @ online

Work packages

■WP-P1-1: Joint evaluation, data provision and operationalization

✓ Evaluate methods and estimators on a large dataset

 \checkmark Synchronise evaluation with other projects

✓ Identify remaining deficiencies

 \checkmark Perform evaluation with a semi-operational system in POLARA

■WP-P1-2: Polarimetric QPE refinement by α segmentation

- \checkmark Identify hail cores and segments with PHIDP bumps
- ✓ Apply the ZPHI method to rainy segments
- \checkmark Derive segment-wise α estimates
- ✓ Estimate uncertainties

■WP-P1-3: Polarimetric QPE in snow and mixed-phase regions

Apply polarimetric VPR (PVPR) in heterogeneous rain
 Improve retrievals for snowfall intensity

■WP-P1-4: Probabilistic merging at increasing resolutions

Error estimation and bias correction between QPE products

- ✓ Formulate a Bayesian merging framework
- ✓ Use estimated uncertainty to derive ensemble QPE

During the current ZPHI procedure to derive A,

- In case of hail contamination, A is biased in pure rain as the extra attenuation from hail cores is ignored.
 → integration should be reset for each pure-rain segment
- (2) Although scan-wise α adjustment is immune to radar miscalibration, it is not ideal enough due to the **inhomogeneity** of the precipitation regimes within the scan.

 $\rightarrow \alpha$ should be optimized **segment-wise** via its dependence on ZDR

$$\langle \alpha \rangle = \frac{\int Z^{b}(r) dr}{\int \frac{Z^{b}(r)}{\alpha [Z_{DR}(r)]} dr} \leftarrow Z_{DR}^{att.cor.}$$

As shown in the last meeting, QPE errors increase when segment-wise α is applied in convective rain, thus

- Two $\alpha(Z_{DR})$ relations are used depending on D_m .
- $\langle \alpha \rangle$ and segment-wise integration is computed/performed only within the segment where Z_H is below 40 dBZ.
- $\Delta \Phi_{DP}$ is replaced with $\Delta \Phi_{DP}^{cal.}$ when it is either two times larger or half times lower than $\Delta \Phi_{DP}^{cal.}$.
- Two boundaries are used to **constrain** Z_{DR} observations.

 $adj. = scan-wise \alpha$ and ray-wise integration $\langle adj. \rangle = scan-wise \alpha$ and segment-wise integration

- $\blacksquare R(A_{H}^{\langle adj. \rangle}, K_{DP}) \text{ generates less biased rays.}$
- $A_{H}^{\langle adj. \rangle}$ rectifies the overestimated values of $A_{H}^{adj.}$ before and underestimated values after the HS.

Convective rain

- Neither $\langle \alpha \rangle$ nor the segmentwise integration can reliably enhance the accuracy of A and thus R(A).
- Up to 40% of noisy $\Delta \Phi_{DP}$ within the segments are substituted.

Stratiform rain

■ $R(A^{\langle \alpha \rangle}, K_{DP})$ yields the lowest errors owing to reduced uncertainties in attenuation and the decreased need for segment-wise integration.

In stratiform rain, $R(A^{\langle \alpha \rangle}, K_{DP})$ performance heavily depends on the accuracy of Z_{DR} calibration

Recommendation: use a rain-type classifier on the entire scan and optimize α values individually for each hydrometeor type through Z_{DR} slopes.

Polarimetric VPR (PVPR) in pure uniform stratiform rain

Polarimetric VPR (PVPR) in heterogeneous rain when the current MLDA cannot accurately estimate the BB-contaminated areas

Polarimetric VPR (PVPR) in heterogeneous rain

the height of the ML significantly varies with azimuth

Polarimetric VPR (PVPR) in heterogeneous rain
(2) when a convective cell penetrates the estimated BB zone

Identified challenges and potential solutions

1 the height of the ML significantly varies with azimuth

- ✓ Automatic detection of ML performed sectorwise, using sector-QVPs
- ✓ Application of the PVPR correction separately for each sector
- ✓ Decision on sector size needs testing

2 when a convective cell penetrates the estimated BB zone

- Convection: decrease in ρ_{HV}, increase in Z_H and Z_{DR} similar to ML signature in the beam
- ✓ Identification of convective cores
 - \rightarrow Searching for the signatures of convection well above the ML at higher elevations
 - \rightarrow Easily distinguished from the snow outside the convective region
- \checkmark PVPR correction not applied to sector affected by convection

Improve retrievals for snowfall intensity

$$S(Z_h, K_{DP}) = \frac{27.9 \times 10^{-3}}{[F_o(L_a - L_b)]^{0.615}} (\frac{P_0}{P})^{0.5} Z_h^{0.33} (K_{DP} \lambda)^{0.615}.$$

- $S(Z_h, K_{DP})$ outperforms $S(Z_h)$
- Snowfall is underestimated when radar observations are taken above 2.5 km height as a result of beam-broadening effects
 - \rightarrow more **pronounced for** $S(Z_h)$ at all elevation angles.
- At 1.5/2.5-deg angles, $S(Z_h, K_{DP})$ at lower altitudes yields smaller snowfall sums compared to $S(Z_h)$.

- $S(Z_h)$ at the precipitation scan consistently has lower NRMSE and higher CC than those at higher elevation angles across the entire height range.
- For $S(Z_h, K_{DP})$
 - ✓ LV1: different elevation angels perform similarly to each other, but slightly worse than $S(Z_h)$ in terms of NRMSE.
 - ✓ LV2: both the 1.5- and 2.5-deg angles display a significant jump/drop in NRMSE/CC, giving the worst scores.
 - ✓ LV3-4: the 1.5-deg angle yields the lowest NRMSE.
 - ✓ LV5: the precipitation scan outperforms those at the higher elevation angles.

■ The change in the $S(Z_h, K_{DP})$ performance at different height levels (elevation scans) can be attributable to **deficiencies in** K_{DP} .

 \rightarrow The K_{DP} retrieval process amplifies the extent of K_{DP} values decreasing towards the ground, leading to near-zero values at low altitudes.

The enhanced snowfall rates in the DGL is only mirrored by $S(Z_h, K_{DP})$. In contrast, $S(Z_h)$ exhibits an increase below the dendritic growth layer (DGL), eventually reaching the surface with some delay.

→ the height-dependent combination of $S(Z_h, K_{DP})$ and $S(Z_h)$ is recommended.

Improve retrievals for snowfall intensity

A single relationship $S(Z_h, K_{DP})$ cannot capture the high diversity of snowflakes and ice crystals

 \rightarrow Define classes and accordingly apply different S relationships

- Signatures to consider for the classes
- $\checkmark\,$ DGL detected with ZDR and KDP
- $\checkmark\,$ Downward gradients below the DGL
- ✓ High ZDR at cloud top, indicating pristine ice with high habit diversity
- ✓ Secondary ice production manifested in KDP enhancements

