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Spatio-temporal mismatch
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A deep convolutional neural network with residual 
blocks is trained to fit radar patches to gauge data
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A deep convolutional neural network with residual 
blocks is trained to fit radar patches to gauge data
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We use a large database of RADOLAN-RY and 
1-minute gauge data
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Training data: 2020

Validation data: 2021

Test data: 2013 to 2021



ResRadNet shows clear improvement of RADOLAN-RY
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ResRadNet shows clear improvement of RADOLAN-RY
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ResRadNet shows clear improvement of RADOLAN-RY
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Improvement is also consistent over time
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● Neural network approach improves common metrics significantly (PCC, NRMSE etc.)
● Result not satisfying for extreme values

Julius‘ intepretation:
● Probabilistic approach necessary to predict range of possible values. 
● Neural network likely to learn the mean (maximum likelihood). 
● Bias stemming from large amount of small rain rate values during training

Also try in the future:
● Predict the five 1-minute values of the station → similar to advection correction (done)
● Add CML information as additional input

Paper under review (Polz et al., 2023, TGRS)  
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Conclusion for Radar-DeepLearning-adjustment
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Preliminary results for Dual-Pol QPE CML adjustment
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R(Zlin, KDP)

R(Zlin, KDP) = R(Zlin) combined with R(KDP) for Z > 40 dBZ

Chen et al. (2023), JHM 



Preliminary results for Dual-Pol QPE CML adjustment
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R(Zlin, KDP) R(A, KDP)
R(A, KDP) with MRR 

and X-band

R(Zlin, KDP) = R(Zlin) combined with R(KDP) for Z > 40 dBZ

R(A, KDP)  = R(A) combined with R(KDP) for Z > 40 dBZ

R(A, KDP) with
- MRR (vertical profile correction of Z and KDP) 
- gap filling with X-band radar observations Chen et al. (2023), JHM 



Preliminary results for Dual-Pol QPE CML adjustment
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CML adjustment shows clear improvement, except 
for the case of Radar QPE with X-Band and MRR data
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R(A, KDP) with MRR 

and X-band



Had to fix bug in pyRADOLAN adjustment code…
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RW_DWD
RW_pyRADOLAN



Had to fix bug in pyRADOLAN adjustment code…
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New long-term comparison of own RW (produced with pyRADOLAN) and 
DWD’s RADOLAN-RW shows good agreement 



Spatio-temporal mismatch

27

Source: DWD

Source: C. Ruf, KIT

Source: DWD

5 minute 1 minute

Optical flow estimation to 
compute intermediate 

timesteps

Estimation

Ensemble QPE

Correction

Intercomparison

Systematic bias

Random error

Probabilistic QPE

Bayesian inference approach

Neural network approach to 
gauge adjusted radar super-

resolution

Summary

“simple” merging



Spatio-temporal mismatch

28

Source: DWD

Source: C. Ruf, KIT

Source: DWD

5 minute 1 minute

Optical flow estimation to 
compute intermediate 

timesteps

Estimation

Ensemble QPE

Correction

Intercomparison

Systematic bias

Random error

Probabilistic QPE

Bayesian inference approach

Neural network approach to 
gauge adjusted radar super-

resolution

Summary

“simple” merging

Still a lot to do here…



Backup slides
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Ahr-Hochwasser: Unangeeichtes Radar unterschätzt stark

radar+gauge radar+cml radar+gauge+cml

Niederschlagssumme
13.-15. Juli 2021

Aktuelle Ergebnisse
aus dem Projekt HoWa-PRO

Radar unangeeicht 
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Korrektur durch CML-Aneichung ist ähnlich zu Stationsaneichung

Radar unangeeicht Radar + Gauge Radar + CML Radar + Gauge + CML
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Bester RMSE für Aneichung mit CML + Stationen
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Radar unangeeicht Radar + Gauge Radar + CML Radar + Gauge + CML


