

RealPEP P1

Merging Radar and CML QPE

Julius Polz, Maximilian Graf, Christian Chwala

RealPEP project meeting, 16.05.23, online

P1 KIT overview

Roadmap by Julius

	Optical flow estimation to compute intermediate timesteps		Probabilist Bayesian inferen	ic QPE ce approach	
	Neural network approach to gauge adjusted radar super- resolution		Random	error	
		Intercomparisor			Ensemble QPE
Source: C. Ruf, KIT			Systematic	c bias	
F A			Spatio-temporal mismatch		
			Estimation	Correction	

A deep convolutional neural network with residual blocks is trained to fit radar patches to gauge data

A deep convolutional neural network with residual blocks is trained to fit radar patches to gauge data

We use a large database of RADOLAN-RY and 1-minute gauge data

Training data: 2020

Validation data: 2021

Test data: 2013 to 2021

ResRadNet shows clear improvement of RADOLAN-RY

ResRadNet shows clear improvement of RADOLAN-RY

R_{nn1} [mm]

ResRadNet shows clear improvement of RADOLAN-RY

13

Improvement is also consistent over time

2021-07-06T16:50

Conclusion for Radar-DeepLearning-adjustment

- Neural network approach improves common metrics significantly (PCC, NRMSE etc.)
- Result not satisfying for extreme values

Julius' intepretation:

- Probabilistic approach necessary to predict range of possible values.
- Neural network likely to learn the mean (maximum likelihood).
- Bias stemming from large amount of small rain rate values during training

Also try in the future:

- Predict the five 1-minute values of the station → similar to advection correction (done)
- Add CML information as additional input

Paper under review (Polz et al., 2023, TGRS)

Probabilistic QPE Bayesian inference approach
Random error
Intercomparison Systematic bias
Spatio-temporal mismatch
Estimation Correction

Optical flow estimation to compute intermediate timesteps	Probabilistic QPE Bayesian inference approach
Neural network approach to gauge adjusted radar super- resolution "simple" mergin	Random error ng Ensemble QPE
	Systematic bias Spatio-temporal mismatch Estimation Correction

 $R(Z_{lin}, K_{DP})$

 $R(Z_{lin}, K_{DP}) = R(Z_{lin})$ combined with $R(K_{DP})$ for Z > 40 dBZ

Chen et al. (2023), JHM

 $R(Z_{lin}, K_{DP}) = R(Z_{lin})$ combined with $R(K_{DP})$ for Z > 40 dBZ

 $R(A, K_{DP}) = R(A)$ combined with $R(K_{DP})$ for Z > 40 dBZ

 $R(A, K_{DP})$ with

- MRR (vertical profile correction of Z and K_{DP})
- gap filling with X-band radar observations

Chen et al. (2023), JHM

 $R(Z_{lin}, K_{DP})$

52.0

51.5

51.0 50.5

50.0

49.5

52.0

51.5

50.0

49.5

6

longitudes

91.0

 $R(A, K_{DP})$

10

 $R(A, K_{DP})$ with MRR

not adjusted

CML adjusted

 $R(A, K_{DP})$ with MRR $R(Z_{lin}, K_{DP})$ $R(A, K_{DP})$ and X-band 52.0 180 51.5 140 100 51.0 50.5 60 40 20 50.0 10 2 49.5 52.0 51.5 91.0 50.0 49.5 10 10 10 9 6 9 6 longitudes longitudes longitudes

not adjusted

nou

ainfall_a

CML adjustment shows clear improvement, except for the case of Radar QPE with X-Band and MRR data

Had to fix bug in pyRADOLAN adjustment code...

Had to fix bug in pyRADOLAN adjustment code...

New long-term comparison of own RW (produced with *pyRADOLAN*) and DWD's RADOLAN-RW shows good agreement

Summary

Summary

Backup slides

Ahr-Hochwasser: Unangeeichtes Radar unterschätzt stark

Radar unangeeicht

- 100
 - Niederschlagssumme
- 13.-15. Juli 2021 40

Aktuelle Ergebnisse aus dem Projekt HoWa-PRO

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

Korrektur durch CML-Aneichung ist ähnlich zu Stationsaneichung

Bester RMSE für Aneichung mit CML + Stationen

