

RealPEP P2 QPN Satellite observations of total column water vapor, clouds and convective intiation

Cintia Carbajal Henken, Jan El Kassar, Rene Preusker

16 May 2023

RealPEP Meeting Online

Total column water vapor **TCWV** in clear-sky regions

- **OLCI** on polar-orbiting satellite Sentinel-3a/3b:
 - high precision 2d TCWV fields
 - high spatial resolution 300x300m²
 - morning time snapshots (9-10 UTC)
 - processed 2016-2022
- SEVIRI on geostationary satellite MSG:
 - lower accuracy timeseries 2d TCWV fields
 - spatial resolution ~3x6km²
 - every 15 min
 - processed 2016-2022

Total column water vapor **TCWV** in clear-sky regions

- **OLCI** on polar-orbiting satellite Sentinel-3a/3b:
 - high precision 2d TCWV fields
 - high spatial resolution 300x300m²
 - morning time snapshots (9-10 UTC)
 - processed 2016-2022
- SEVIRI on geostationary satellite MSG:
 - lower accuracy timeseries 2d TCWV fields
 - spatial resolution ~3x6km²
 - every 15 min
 - processed 2016-2022
- FCI on geostationary satellite MTG:
 - launched, first (test) data expected soon
 - building retrieval framework NIR+TIR
 - spatial resolution ~1x2 km²
 - Every 2.5-10 min

Total column water vapor **TCWV** in clear-sky regions

- **OLCI** on polar-orbiting satellite Sentinel-3a/3b:
 - high precision 2d TCWV fields
 - high spatial resolution 300x300m²
 - morning time snapshots (9-10 UTC)
 - processed 2016-2022
- SEVIRI on geostationary satellite MSG:
 - lower accuracy timeseries 2d TCWV fields
 - spatial resolution ~3x6km²
 - every 15 min
 - processed 2016-2022
- FCI on geostationary satellite MTG:
 - launched, first (test) data expected soon
 - building retrieval framework NIR+TIR
 - spatial resolution ~1x2 km²
 - Every 2.5-10 min

Exploit satellite-based TCWV to advance Convective Initiation (CI) detection

Total column water vapor **TCWV** in clear-sky regions

- **OLCI** on polar-orbiting satellite Sentinel-3a/3b:
 - high precision 2d TCWV fields
 - high spatial resolution 300x300m²
 - morning time snapshots (9-10 UTC)
 - processed 2016-2022
- SEVIRI on geostationary satellite MSG:
 - lower accuracy timeseries 2d TCWV fields
 - spatial resolution ~3x6km²
 - every 15 min
 - processed 2016-2022
- FCI on geostationary satellite MTG:
 - launched, first (test) data expected soon
 - building retrieval framework NIR+TIR
 - spatial resolution ~1x2 km²
 - Every 2.5-10 min

Exploit satellite-based TCWV to advance Convective Initiation (CI) detection → information on potential CI can be used as a proxy for future new (convective) cells in radar-based precipitation nowcasting

Freie Universität Berlin

TCWV \rightarrow clear-sky Cl \rightarrow clouds \rightarrow cloudy Cl \rightarrow thunderstorm \rightarrow heavy precipitation

16 May 2023

Freie Universität Berlin

TCWV \rightarrow clear-sky Cl \rightarrow clouds \rightarrow cloudy Cl \rightarrow thunderstorm \rightarrow heavy recipitation

TCWV \rightarrow clear-sky Cl \rightarrow clouds \rightarrow cloudy Cl \rightarrow thunderstorm \rightarrow heavy recipitation

Clear-sky (pre-)convective environment
Deep, moist convection (RDT)

(heavy precipitation proxy?)

TCWV \rightarrow clear-sky Cl \rightarrow clouds \rightarrow cloudy Cl \rightarrow thunderstorm \rightarrow heavy recipitation

Clear-sky (pre-)convective environment
Deep, moist convection (RDT)

(heavy precipitation proxy?)

TCWV \rightarrow clear-sky Cl \rightarrow clouds \rightarrow cloudy Cl \rightarrow thunderstorm \rightarrow heavy recipitation

Clear-sky (pre-)convective environment
Deep, moist convection (RDT)

(heavy precipitation proxy?)

16 May 2023

TCWV \rightarrow clear-sky Cl \rightarrow clouds \rightarrow cloudy Cl \rightarrow thunderstorm \rightarrow heavy precipitation

Clear-sky (pre-)convective environment (heavy precipitation proxy?)

16 May 2023

9-10 UTC/ 11-12 LT

9-10 UTC/ 11-12 LT

Cintia Carbajal Henken

Convective cloud observations

Why the NWC-SAF RDT product?

- freely available software, well established and supported
- SEVIRI L1 + ERA5 reanalyses: processed 2016-2022
- detection of (small) convective clouds
- tracking/monitoring of all detected convective systems:
 - life cycle/phase, duration, severity etc.
 - gravity lat/lon since detected as convective cloud

Freie

Universität Berlin

Match-up dataset

Constraints for non-convective/(pre-)convective environments

- clear-sky fraction through most of timeseries (CF > threshold)
- good quality TCWV pixels (outliers, buffer zone)
- no observed convection in hours before
- First observed convective cloud at least one hour after OLCI overpass
- no more than 3 hours after OLCI overpass
- short duration of RDT to avoid looking at advected convective system

Freie

Universität Berlin

Match-up dateset

Constraints for non-convective/(pre-)convective environments

- clear-sky fraction through most of timeseries (CF > threshold)
- good quality TCWV pixels (outliers, buffer zone)
- no observed convection in hours before
- First observed convective cloud at least one hour after OLCI overpass
- no more than 3 hours after OLCI overpass
- short duration of RDT to avoid looking at advected convective system

- > 1000 non-convective/no RDT
- ~ 100 (pre-) convective/RDT

16 May 2023

RealPEP Meeting Online

TCWV-based metrics

Characterizing non/pre-convective environments

Possible features/predictors for classification/prediction

Amount of TCWV (OLCI+SEVIRI):

- TCWV mean, std, percentiles (10, 50, 90)
- TCWV anomaly: mean, std, percentiles (10, 50, 90)

Freie

Universität Berlin

TCWV-based metrics

Characterizing non/pre-convective environments

Possible features/predictors for classification/prediction

Amount of TCWV (OLCI+SEVIRI):

- TCWV mean, std, percentiles (10, 50, 90)
- TCWV anomaly: mean, std, percentiles (10, 50, 90)

TCWV spatial information (OLCI):

spatial auto-correlation and texture measures

- Grey Level Co-Occurrence Matrices
- Gradient
- Etc.

Measures of contrast, homogeneity/ correlation, orderliness:

- Varying pixel distances
 - perpendicular/parallel to average BL wind direction (assymetry factor)

TCWV-based metrics

Characterizing non/pre-convective environments

Possible features/predictors for classification/prediction

Amount of TCWV (OLCI+SEVIRI):

- TCWV mean, std, percentiles (10, 50, 90)
- TCWV anomaly: mean, std, percentiles (10, 50, 90)

TCWV spatial information (OLCI):

spatial auto-correlation and texture measures

- Grey Level Co-Occurrence Matrices
- Gradient
- Etc.

TCWV temporal information (SEVIRI):

- Trends: SMA, CMA, relative, ...
- Jumps

Model parameters (ERA5)

- T and T_{dew}
- Difference OLCI TCWV & ERA TCWV_{corrected}

Freie Universität Berlin

Likelihood functions/ PDFs

TCWV amount

TCWV spatial information

TCWV temporal information

RealPEP Meeting Online

Cintia Carbajal Henken

I have **conditional probabilities/likelihoods** (from relative frequencies):

P(Data | RDT) = what is the probability of seeing Data if RDT development later on

Using a small set of features/predictors I want to compute:

P(RDT | Data) = what is the probability of observing RDT development later on given Data

Freie

Universität Berlin

Conditional probabilities

I have conditional probabilities/likelihoods (from relative frequencies):

P(Data | RDT) = what is the probability of seeing Data if RDT later on

Using a small set of features/predictors I want to compute:

P(RDT | Data) = what is the probability of observing RDT later on given Data

Use **Bayesian Theorem/Bayes'rule** to get from P(B|A) to P(A|B)

Powerful machine-learning classification tool, simple implementation, fast

Freie

Universität Berlin

Naive Bayesian approach

Chain rule of conditional probabilities

Features are assumed to be conditionally independent **D: Data**

- **D1**: Amount of TCWV
- D2: TCWV spatial information
- D3: TCWV temporal information

H: Hypothesis RDT occurrence within X hours

$$P(H|D_1 \cap D_2 \cap D_3) = rac{P(D_1|H) * P(D_2|H) * P(D_3|H) * P(H)}{P(D_1) * P(D_2) * P(D_3)}$$

Naive Bayesian approach

Chain rule of conditional probabilities

Features are assumed to be conditionally independent **D: Data**

- **D1**: Amount of TCWV
- D2: TCWV spatial information
- D3: TCWV temporal information

H: Hypothesis RDT occurrence within X hours

$$P(H|D_1 \cap D_2 \cap D_3) = rac{P(D_1|H) * P(D_2|H) * P(D_3|H) * P(H)}{P(D_1) * P(D_2) * P(D_3)}$$

Posterior P at timestep t becomes prior P at timestep t+1

Freie

For ff in feature_combinations:

select random feature set

> 1000 x • 1 TCWV amount, 1 TCWV spatial info, 1 TCWV temporal info

Freie

Universität Berlin

16 May 2023

For ff in feature_combinations:

- select random feature set
- > 1000 x 1 TCWV amount, 1 TCWV spatial info, 1 TCWV temporal info

K-fold cross-validation

- divide samples in k groups to estimate skill of model on new data
- here dataset (1000+100) into 10 parts

For k in range(9):

• 9/10 for training \rightarrow read Likelihood Tables for each SEVIRI time step

Freie

Universität Berlin

10 x

For ff in feature_combinations:

- select random feature set
- > 1000 x 1 TCWV amount, 1 TCWV spatial info, 1 TCWV temporal info

K-fold cross-validation

- divide samples in k groups to estimate skill of model on new data
- here dataset (1000+100) into 10 parts

10 x For k in range(9):

• 9/10 for training \rightarrow read Likelihood Tables for each SEVIRI time step

> 100 x For dd in test_data:

1/10 for testing

~ 4-12 x For tt in seviri_timeseries: Bayesian framework

- read in prior and likelihood and apply Bayesian update
- store posterior probability timeseries

Freie Universität Berlin

For ff in feature_combinations:

- select random feature set
- > 1000 x 1 TCWV amount, 1 TCWV spatial info, 1 TCWV temporal info

K-fold cross-validation

- divide samples in k groups to estimate skill of model on new data
- here dataset (1000+100) into 10 parts

10 x For k in range(9):

• 9/10 for training \rightarrow compute Likelihood functions for each SEVIRI time step

> 100 x For dd in test_data:

1/10 for testing

~ 4-12 x For tt in seviri_timeseries: Bayesian framework

- read in prior and likelihood and apply Bayesian update
- store posterior probability timeseries

Compute and save skill scores for test data

Compute and save mean skill scores for feature set Assessment of best feature set performance

Freie

Universität Berlin

16 May 2023

Posterior probability timeseries

DFG RealPEP

Freie

Universität Berlin

Evaluation example

Evaluation example

Reconsidering constraints for match-up dataset

- Unbalanced dataset
- RDT vs. Cl, new NWCSAF software version
- independent a-priori information (ERA5 stability indices)

Extend feature set

- Difference ERA5 TCWV forecast (height corrected) and OLCI TCWV
- Measure of (relative) water vapor amount in BL?
- Apply Kernel density estimator for PDFs

Evaluation performance

- Classification vs. probabilities
- Skill scores

Towards (Pred)RNN

- Match-up dataset of timeseries of TCWV fields + convective cloud information + metrics
- Python modules
- Merge satellite data with QPE data

Thank you!

16 May 2023

RealPEP Meeting Online

Cintia Carbajal Henken