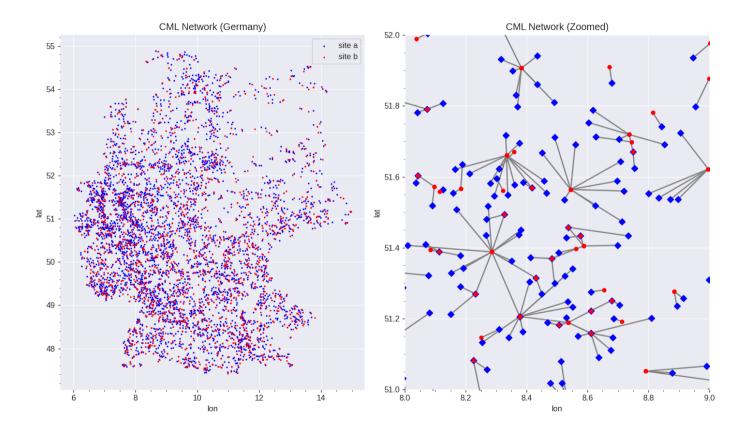
Current Status of CML Data Assimilation (P3)

K. Vobig

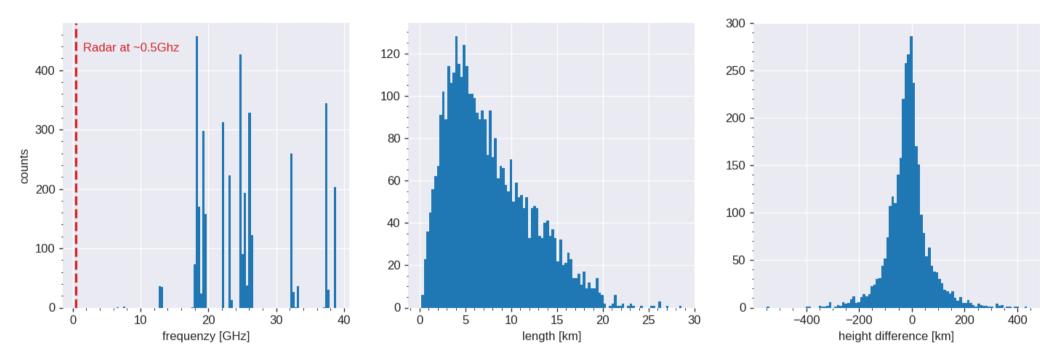
Deutscher Wetterdienst Wetter und Klima aus einer Hand



- CML data already successfully employed for the estimation of rain rates (QPE) \rightarrow P1
- overall objective here (P3): data assimilation of CML data in numerical weather prediction models for improving QPF
 - able to contribute to bridging the gap between QPN and NWP?
 - (How much) does it improve QPF?
 - How does it compare to Radar data assimilation?
- in the following: discussion of **technical details** of CML data assimilation and results of **case study**

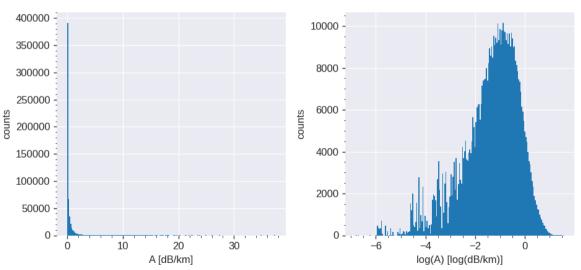
CML Network Overview I

- each link consists of a sender and receiver (blue/red)
- ~4000 CMLs in current dataset for June 2019
- temporal resolution 1min



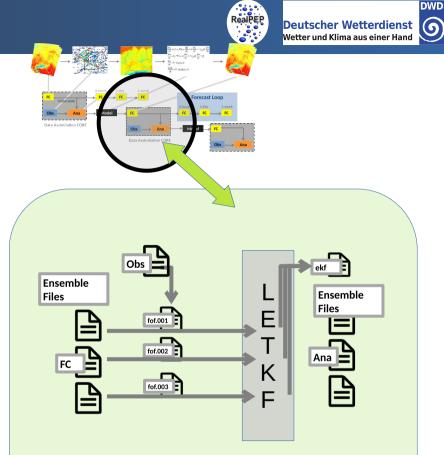
CML Network Overview II

DWD



CML frequency significantly above DWD Radar frequency
→ different physics involved!

CML Path-Integrated Attenuation

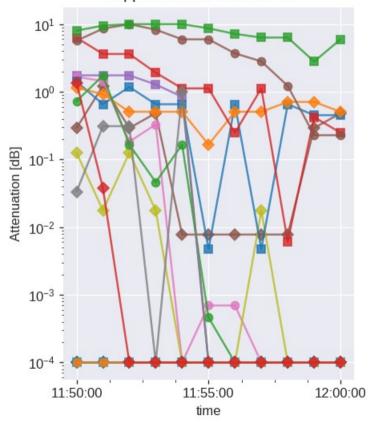


- use path-integrated specific attenuation for assimilation
 - referred to as A from now on
 - A [dB/km] = attenuation [dB] / distance [km]
 - direct relationship of A with rain rate (via power law)
- most attenuations very small
- distribution "normal" in log space
- **outlook**: use f(A) for assim.

LETKF Assimilation System

- for assimilating observation data, feedback/fof files have to be generated
- each fof file (one for each ensemble member) contains all data relevant to the LETKF assimilation process for a specific assim. date
- particularly, for each observation there has to be a simulated model equivalent!

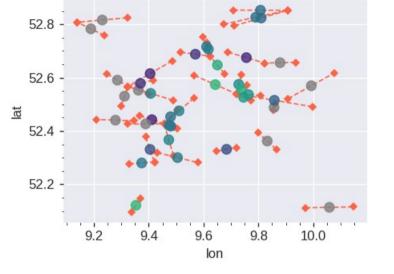
- fof.*: sim. + obs. quantities of ens. members
- LETKF produces increments depending on innovations + Kalman gain


Processing Observed Attenuations

perform temporal superobbing/smoothing:

- for getting observations relevant for an assimilation at t₀ calc. mean of A(cml, t) over a 10 min time window [t₀ - 10min, t₀]
- smooths out erratic fluctuations of attenuations
- **outlook**: also perform spatial thinning and/or superobbing

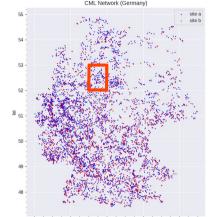
2019-06-03; 9.1<lon<9.5; 52.3<lat<52.9; clipped to min. value of 10⁻⁴


Simulation via EMVORADO

- using the Radar forward operator EMVORADO in offline mode for simulating attenuations, i.e., calculating relevant model equivalents
- two main inputs here (besides many other config. options):
 - ICON model fields (on regular grid) QV, QR, ...
 - auto-generated namelist containing all static information for each CML that should be simulated (equivalent to Radar stations): frequency, lat/lon/amsl of "station", (single) azimuth/elevation of ray, ...
- extract path-integrated one-way attenuation from output
- perform EMVORADO run for **each ensemble member** (→ model fields)!
- current limitations:
 - single EMVORADO run not able to simulate all (~4000) CMLs
 - simulation does not include water vapor attenuation

CML Feedback Files

- collect processed observed and simulated data for specific assim. date
- use halfway lat/lon/level of each CML in feedback files
- CML data currently assimilated as SYNOP observation (obstype) and using an experimental codetype and varno
- use relative observation error of 20%
- write all data into feedback (netcdf) file



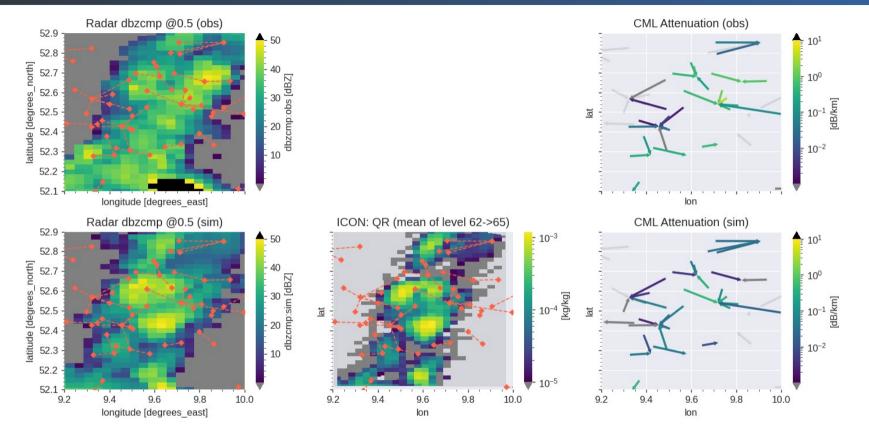
obstype	(d_hdr)	float32	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	BS
codetype	(d_hdr)	float32	991.0 991.0 991.0 991.0 991.0	8
statid	(d_hdr)	S10	b'1085' b'1208' b'1716' b'1727'	
lat	(d_hdr)	float32	52.82 52.78 52.44 52.51 52.37	B9
lon	(d_hdr)	float32	9.23 9.189 9.278 9.858 9.473	89
time	(d_hdr)	float32	60.0 60.0 60.0 60.0 60.0 60.0	8
varno	(d_body)	float32	991.0 991.0 991.0 991.0 991.0	
obs	(d_body)	float32	0.0 0.0 0.0 0.09817 0.0002519	B9
level	(d_body)	float32	60.52 61.24 103.1 99.79 110.8	89
state	(d_body)	float32	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	8
e_o	(d_body)	float32	0.0 0.0 0.0 0.01963 5.038e-05	
veri_data	(d_veri, d_body)	float32	0.0 0.0 0.01968 0.07365	B2

BACY Setup & Case Study Details

- perform assimilation on 2019-06-03 12:00:00
- only use CMLs within region 9.2°<lon<10°, 52.1°<lat<52.9°
 - evades EMVORADO limitation
 - 40 CMLs within this region

6 8 10 12 14

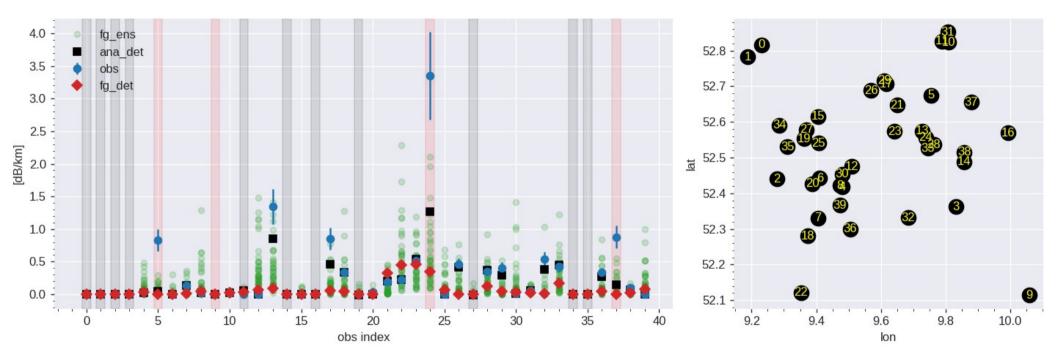
- automated system for the construction of CML feedback files
 - includes all necessary data processing steps
 - implemented (mostly) in Python
- integrated into new BACY experiment
 - only CML data is set to active here!


DWD

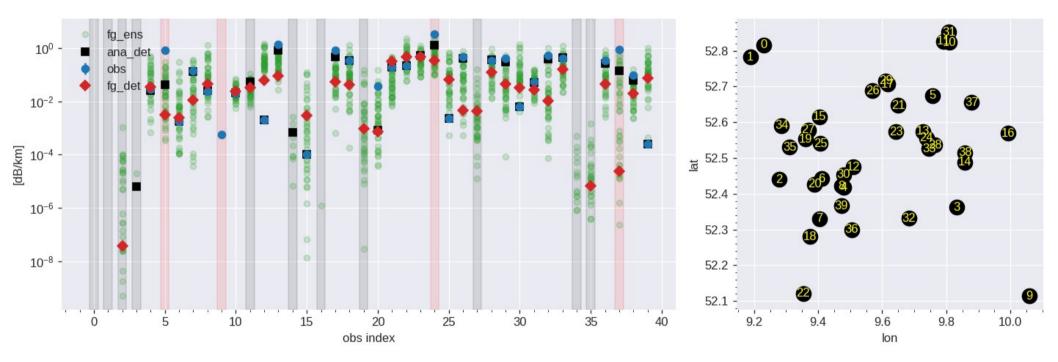
6

Deutscher Wetterdienst

Overview: Pre-Assimilation


consistency/plausibility check based on Radar reflectivities, ICON model fields for QR, and CML attenuations: **passed**

CML Assimilation Result

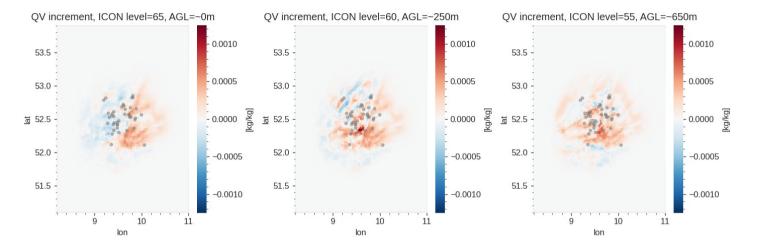

Deutscher Wetterdienst Wetter und Klima aus einer Hand

DWD

- representation of corresponding "ekf" file (LETKF output)
- shaded background \rightarrow special assimilation state
 - passive (gray), rejected (red)

CML Assimilation Result (Log Scale)

- rescaled y-axis using logarithmic scale
- outlook: assimilation of log(A) might be interesting!


DWD

6

Deutscher Wetterdienst Wetter und Klima aus einer Hand

RealPEP

ICON Increments for QV

- LETKF increments for ICON model fields (for QV)
- main "ingredients" for LETKF increments: innovations, correlations/variances, localization
- **outlook**: further study of correlations $\rho(q_i(\mathbf{x}), A(\mathbf{x}))$
 - straightforward in single-obs. experiments!

DWD

0

Deutscher Wetterdienst Wetter und Klima aus einer Hand

Summary & Outlook

- Deutscher Wetterdienst Wetter und Klima aus einer Hand
- first version for assimilating CML data (integrated into BACY)
- first assimilation results seem plausible
- possibility for many interesting studies now!

- evaluate/verify results of "CONV" vs "CONV+CML" BACY cycles
- study impact of several parameters: obs. error, localization, ...
- study transformation of data before assimilation (e.g. logarithmic)
- general quality control, spatial thinning/superobbing, bias correction (more data/statistics needed)
- EMVORADO developments

Thank you for your attention!