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About me

❑Master: 
▪Water Resource Management 
▪Sharif university (Iran): 2015-2017
❑Ph.D.:
❑Sharif university (Iran): 2017-
2022
▪University of Strasbourg (France): 
2019-2022
▪ Title: Integrating remote sensing 
information into a distributed 
hydrological model for improving 
water budget predictions

▪Probabilistic framework for water 
budget estimation in low runoff regions

▪Improvement of soil moisture and 
groundwater level estimations using a 
scale‐consistent river parameterization 
for the coupled ParFlow-CLM

▪Multivariate satellite data assimilation 
for improving coupled ParFlow-CLM 
hydrological model
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Motivation

❑ Evaluation of QPE and QPN improvements in a 

nowcasting framework

▪ Data Assimilation (discharge and soil moisture)

▪ Application of different hydrological models (conceptual and 

physically-based)

❑ Focus on Improving:

▪ DA efficiency (Kalman Gain)

▪ Model’s (ParFlow) predictions
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Research Gap

❑ Traditional Kalman Filter: 

▪ The covariance matrix  (P) of the errors is obtained based on a 

linear relationship. 

❑ Data-Driven-Kalman Filter:

▪ Leverages Data-Driven to estimate the covariance matrix

▪ Captures non-linear relationships between variables
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Objective
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DA 

Improved Model’s predictions

:Scaling approach
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Methodology

❑1. Data learning: Data-Driven-DA

❑Data-Driven Methods:

▪ Covariance Neural Network (CovNet)

▪ Gaussian Process Regression (GPR)

▪ Convolutional Neural Networks (CNNs)

▪ Deep Belief Networks (DBNs)

▪ Auto-encoders

ML/DL

DA

• States
• Observtions

• Covariance 
matrix of errors

• K
• Updated 

States
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explicitly designed for 

estimating covariance matrices.

can be used to estimate the covariance matrix 

by modeling the conditional distribution of the 

latent variables given the observed data.

can provide uncertainty estimates 

along with the covariance matrix 

estimation.



❑ 2. Modeling rivers in ParFlow

High Resolution Channel Course Resolution Channel

❑ParFlow is a grid-scale model.

❑Large scale simulations: ParFlow

should be used at coarse resolution.

❑Coarse resolution can be also

imposed by data availability.

Coarse resolution: Accuracy of the 

simulated flow in the river

Coarse resolution: Accuracy of the 

simulated  exchange rate surface-

subsurface

Methodology
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(Schalge et al., 2019; Soltani et al., 2022)



A2= W2 × W2 is the area of the river in model and 
A1 = W2 × W1
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Saturated hydraulic conductivity:

(Ksat)

Manning's coefficient: (n)

Improving the accuracy of the 

simulated  exchange rate 

surface-subsurface

Improving the accuracy of the 

simulated flow in the river
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Implementation Steps

❑Developing Data-Driven methods

❑Testing the methods by artificial data

❑Selecting case study and time period
▪ E.g. Wachtberg, Ammer and Bode watersheds

❑Running the ParFlow model 
▪ Scaling approach

❑Implementing the methodology Data-Driven-DA

❑Evaluating results
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Thank you for your attention!
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