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TCI Basics: Motivation & Recap
● LETKF data assimilation (DA) may give 

small increments due to small ensemble 
spread – even in the presence of large 
discrepancies between obs./sim. REFLs 

● general idea of targeted covariance inflation (TCI) for REFLs:
 assign individual “virtual” simulated REFL to each member via certain 

algorithm/model→ spread is increased →previously discarded observations may be 
actively assimilated again →🙂

● TCI evolved to process-oriented and conditional approach
 conditional→ reduce noise introduced into system

 process orientation → accurately initiate convection

● TCI implemented by pre-processing feedback files (before entering LETKF) 
and altering simulated REFLs for each member
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TCI Basics: Process Orientation
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● process-oriented TCI: accurately trigger 
convection/dynamic generation of REFLs

● determine values for “virtual” REFLs accordingly
● using simple linear models M with spec. humidity 

qv as predictor
 M:  δZi(x,y,h,t) = α * δqvi(x,y,h’,t)

● model training/selection based solely on data in the nearest spatio-temporal 
vicinity of convective events

● overall idea: spread of qv “imprinted” onto spread of Z → assim. “favors” 
members with more humidity → additional increments for humidity qv are 
produced → model (hopefully) generates qr/qs/qg →EMVORADO simulates 
REFL

● in progress: machine-learning based model→more flexible/powerful approach
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TCI Basics: Conditions
● conditional TCI aims to reduce noise introduced into the system state 
● especially relevant for fully-cycled DA runs
● TCI only active at minimal set of spatial points (less is more)
● each observation must fulfill a certain set of conditions for TCI to be 

active: missing spread, large enough observation, ...
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TCI Case Study: Setup
● performed two data assimilation cycles: “reference” / “TCI” cycle

 cycles are based on operational ICON-KENDA framework

 assimilation of conv. and 3D radar data

 Latent Heat Nudging (LHN) mechanism active

 free forecasts starting every 3h, max. leadtime 6h

 period: from 2019-06-03 to 2019-06-20

● TCI algorithm is applied:
 hourly at every LETKF assimilation step 

 to ALL radar data of German radar network
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TCI Case Study: Verification I (REFL Forecasts)

● forecasts initialized from 
reference/TCI ass. cycle

● forecast lead time 1h
● ass. cycles already ran 

for ~2 days
● depiction of forecasted 

REFLs (“interesting” region)
● source for differences:

 accumulation effects

 last assim. at 15 UTC

● result: accurate, dynamic 
generation of REFLs
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TCI Case Study: Verification II  (FSS for REFLs)
● Fractional Skill Scores (FSS) for 

REFLs from free forecasts
● result I: clear FSS improvement 

for lead times of up to 6h
● result II: positive impact even 

more pronounced for forecast 
initialized at 12 UTC, FSS 
improvement by up to 10%
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TCI Summary & Outlook
● discussed most recent conditional and process-oriented TCI
● overall, TCI results are positive

 TCI leads to accurate generation of “new” REFL cells

 TCI improves fractional skill scores (FSS) of REFL forecasts over lead 
times of 6h and by up to 10%

● paper discussing the TCI recently submitted:
 Vobig et al., https://doi.org/10.5194/egusphere-2024-2876, 2024

● next steps:
 work on operationalization of TCI

 continue work on machine learning based TCI



CML Data Assimilation
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CML Basics: Motivation & Overview
● overall objective here: data assimilation 

(DA) of Commercial microwave link (CML) 
data in NWP models for improving QPF

 (How much) does it improve QPF?

 How does it compare to Radar DA?

● CMLs employed for the interconnection of 
(commercial) cell phone towers

● transmitted radiation may be attenuated 
by, e.g., raindrops → CML attenuation 
carries information about atmospheric 
conditions between two towers 

● ~4000 CMLs in current dataset for 
June 2019 with resolution of 1min
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CML Basics: Overview II

● CML frequency above DWD Radar frequency
→ different physics involved!

● use path-integrated specific attenuation 
A (with unit dB/km) for assimilation

● direct relationship of A with rain rate via 
power law

 also empirically hinted at by “linear” relationship 
on double log. scale (see plot) 

● (very) noisy data for A < ~10-2 dB/km 
→ use as cutoff for CML DA
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CML Basics: LETKF DA System 
● for a LETKF data assimilation it is necessary to 

generate feedback/fof files
● each (ensemble) fof file contains all data 

relevant to LETKF assimilation (at specific date)
● particularly, for each observation there has to be 

a simulated model equivalent 
● system for construction of CML fof files:

 perform all necessary data (pre-)processing 
steps: EMVORADO calculations, temporal 
superobbing, etc.

 implemented (mostly) in Python

 integrated in BACY→quasi-operational DA exps. 

L
E
T
K
F

● fof.*: sim. + obs. quantities of ens. 
members 

● LETKF produces increments depending 
on innovations + Kalman gain
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CML Basics: CML Simulations
● employ radar forward operator EMVORADO 

for computing simulated CML attenuations A
● differences between Radar and CML:

 Radar: 17 stations, many azimuths, few 
elevations,  frequency ~5 GHz

 CML: ~4000 “stations”/sender, individual 
azimuth/elevation (only one per station) and 
frequency within 10 – 40 GHz

● each CML sender is interpreted as a single 
Radar station with individual lat/lon/level, 
azimuth/elev. of ray, frequency, etc.

● perform EMVORADO run for each ensemble 
member based on ICON-D2 model fields
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CML Case Study: Setup
● perform single BACY “core-more runs”: 

 single LETKF assim. followed by ICON model run

 assimilating ALL available CMLs at 2019-06-03T12:00

 branching off from “parent” BACY cycle during which only conventional 
data is assim.: no LHN (!), no RADAR assim., etc.

 study different DA schemes: conv, CML, radar, conv+CML, ...

● study LETKF output, ICON increments, model dynamics, and FSS
● eventually zoom into “interesting” regions exhibiting certain properties: 

 large discrepancies between obs. and sim. REFLs

 sizeable spread for sim. REFLs

 “enough” CML stations 
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CML Case Study: LETKF Assimilation Results

● only assimilating CML 
data here

● dynamic obs. error: 
1 dB / “CML length”

● first-guess check 
switched off

● vert. localization: 0.3 
● horiz. localization: 16.0

representation of relevant LETKF assimilation input/output data (from “ekfCML” file)
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● LETKF increments for 
QV and T

● reduced 3D to 2D fields 
via mean along height 
dimension (→top view)
or lat. dimension 
(→side view) 

● result: clear differences 
to conv. DA become 
apparent; CML and radar 
rather similar

CML Case Study: LETKF Increments
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CML Case Study: Model Dynamics (REFLs)

● accurate initiation 
of convection 

● clear positive 
impact of CML DA 
(w.r.t. conv. DA)

● CML DA similar to 
radar DA

● interesting: conv. 
data seem to 
“block” REFL 
generation

simobs

lead tim
e

visualization of radar REFLs (dbzcmp) at 1.5°
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CML Case Study: Fractional Skill Score (REFLs)

● CML DA consistently improves FSS by up to about 10% 
● CML DA brings improvement even on top of conv.+radar DA
● however, impact of radar DA much more pronounced than CML
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fractional skill score (FSS) w.r.t radar REFLs over complete domain
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CML Summary & Outlook
● set up system for simulating and assimilating CML data
● case study comparing results of single time DA and subsequent model 

run for different configurations (“core-more runs”)
 short-term REFL verification shows accurate initiation of convection

 FSS for REFLs improved by up to 10%

 overall, already clear improvement for these non-cycled experiment 

● next steps:
 finish paper on CML data assimilation

 conduct longer-term fully-cycled BACY experiments and study CML impact 
on FSS and observation error statistics

 general quality control, spatial thinning/superobbing, bias correction

 further study impact of parameters like obs. error, localization, etc.



Thank you for your attention!
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