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TCI Basics: Motivation & Recap
● LETKF data assimilation (DA) may give 

small increments due to small ensemble 
spread – even in the presence of large 
discrepancies between obs./sim. REFLs 

● general idea of targeted covariance inflation (TCI) for REFLs:
 assign individual “virtual” simulated REFL to each member via certain 

algorithm/model→ spread is increased →previously discarded observations may be 
actively assimilated again →🙂

● TCI evolved to process-oriented and conditional approach
 conditional→ reduce noise introduced into system

 process orientation → accurately initiate convection

● TCI implemented by pre-processing feedback files (before entering LETKF) 
and altering simulated REFLs for each member
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TCI Basics: Process Orientation
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● process-oriented TCI: accurately trigger 
convection/dynamic generation of REFLs

● determine values for “virtual” REFLs accordingly
● using simple linear models M with spec. humidity 

qv as predictor
 M:  δZi(x,y,h,t) = α * δqvi(x,y,h’,t)

● model training/selection based solely on data in the nearest spatio-temporal 
vicinity of convective events

● overall idea: spread of qv “imprinted” onto spread of Z → assim. “favors” 
members with more humidity → additional increments for humidity qv are 
produced → model (hopefully) generates qr/qs/qg →EMVORADO simulates 
REFL

● in progress: machine-learning based model→more flexible/powerful approach
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TCI Basics: Conditions
● conditional TCI aims to reduce noise introduced into the system state 
● especially relevant for fully-cycled DA runs
● TCI only active at minimal set of spatial points (less is more)
● each observation must fulfill a certain set of conditions for TCI to be 

active: missing spread, large enough observation, ...
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TCI Case Study: Setup
● performed two data assimilation cycles: “reference” / “TCI” cycle

 cycles are based on operational ICON-KENDA framework

 assimilation of conv. and 3D radar data

 Latent Heat Nudging (LHN) mechanism active

 free forecasts starting every 3h, max. leadtime 6h

 period: from 2019-06-03 to 2019-06-20

● TCI algorithm is applied:
 hourly at every LETKF assimilation step 

 to ALL radar data of German radar network
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TCI Case Study: Verification I (REFL Forecasts)

● forecasts initialized from 
reference/TCI ass. cycle

● forecast lead time 1h
● ass. cycles already ran 

for ~2 days
● depiction of forecasted 

REFLs (“interesting” region)
● source for differences:

 accumulation effects

 last assim. at 15 UTC

● result: accurate, dynamic 
generation of REFLs
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TCI Case Study: Verification II  (FSS for REFLs)
● Fractional Skill Scores (FSS) for 

REFLs from free forecasts
● result I: clear FSS improvement 

for lead times of up to 6h
● result II: positive impact even 

more pronounced for forecast 
initialized at 12 UTC, FSS 
improvement by up to 10%
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TCI Summary & Outlook
● discussed most recent conditional and process-oriented TCI
● overall, TCI results are positive

 TCI leads to accurate generation of “new” REFL cells

 TCI improves fractional skill scores (FSS) of REFL forecasts over lead 
times of 6h and by up to 10%

● paper discussing the TCI recently submitted:
 Vobig et al., https://doi.org/10.5194/egusphere-2024-2876, 2024

● next steps:
 work on operationalization of TCI

 continue work on machine learning based TCI



CML Data Assimilation
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CML Basics: Motivation & Overview
● overall objective here: data assimilation 

(DA) of Commercial microwave link (CML) 
data in NWP models for improving QPF

 (How much) does it improve QPF?

 How does it compare to Radar DA?

● CMLs employed for the interconnection of 
(commercial) cell phone towers

● transmitted radiation may be attenuated 
by, e.g., raindrops → CML attenuation 
carries information about atmospheric 
conditions between two towers 

● ~4000 CMLs in current dataset for 
June 2019 with resolution of 1min
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CML Basics: Overview II

● CML frequency above DWD Radar frequency
→ different physics involved!

● use path-integrated specific attenuation 
A (with unit dB/km) for assimilation

● direct relationship of A with rain rate via 
power law

 also empirically hinted at by “linear” relationship 
on double log. scale (see plot) 

● (very) noisy data for A < ~10-2 dB/km 
→ use as cutoff for CML DA



K.Vobig 13

CML Basics: LETKF DA System 
● for a LETKF data assimilation it is necessary to 

generate feedback/fof files
● each (ensemble) fof file contains all data 

relevant to LETKF assimilation (at specific date)
● particularly, for each observation there has to be 

a simulated model equivalent 
● system for construction of CML fof files:

 perform all necessary data (pre-)processing 
steps: EMVORADO calculations, temporal 
superobbing, etc.

 implemented (mostly) in Python

 integrated in BACY→quasi-operational DA exps. 

L
E
T
K
F

● fof.*: sim. + obs. quantities of ens. 
members 

● LETKF produces increments depending 
on innovations + Kalman gain
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CML Basics: CML Simulations
● employ radar forward operator EMVORADO 

for computing simulated CML attenuations A
● differences between Radar and CML:

 Radar: 17 stations, many azimuths, few 
elevations,  frequency ~5 GHz

 CML: ~4000 “stations”/sender, individual 
azimuth/elevation (only one per station) and 
frequency within 10 – 40 GHz

● each CML sender is interpreted as a single 
Radar station with individual lat/lon/level, 
azimuth/elev. of ray, frequency, etc.

● perform EMVORADO run for each ensemble 
member based on ICON-D2 model fields
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CML Case Study: Setup
● perform single BACY “core-more runs”: 

 single LETKF assim. followed by ICON model run

 assimilating ALL available CMLs at 2019-06-03T12:00

 branching off from “parent” BACY cycle during which only conventional 
data is assim.: no LHN (!), no RADAR assim., etc.

 study different DA schemes: conv, CML, radar, conv+CML, ...

● study LETKF output, ICON increments, model dynamics, and FSS
● eventually zoom into “interesting” regions exhibiting certain properties: 

 large discrepancies between obs. and sim. REFLs

 sizeable spread for sim. REFLs

 “enough” CML stations 
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CML Case Study: LETKF Assimilation Results

● only assimilating CML 
data here

● dynamic obs. error: 
1 dB / “CML length”

● first-guess check 
switched off

● vert. localization: 0.3 
● horiz. localization: 16.0

representation of relevant LETKF assimilation input/output data (from “ekfCML” file)
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● LETKF increments for 
QV and T

● reduced 3D to 2D fields 
via mean along height 
dimension (→top view)
or lat. dimension 
(→side view) 

● result: clear differences 
to conv. DA become 
apparent; CML and radar 
rather similar

CML Case Study: LETKF Increments
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CML Case Study: Model Dynamics (REFLs)

● accurate initiation 
of convection 

● clear positive 
impact of CML DA 
(w.r.t. conv. DA)

● CML DA similar to 
radar DA

● interesting: conv. 
data seem to 
“block” REFL 
generation

simobs

lead tim
e

visualization of radar REFLs (dbzcmp) at 1.5°
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CML Case Study: Fractional Skill Score (REFLs)

● CML DA consistently improves FSS by up to about 10% 
● CML DA brings improvement even on top of conv.+radar DA
● however, impact of radar DA much more pronounced than CML
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fractional skill score (FSS) w.r.t radar REFLs over complete domain
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CML Summary & Outlook
● set up system for simulating and assimilating CML data
● case study comparing results of single time DA and subsequent model 

run for different configurations (“core-more runs”)
 short-term REFL verification shows accurate initiation of convection

 FSS for REFLs improved by up to 10%

 overall, already clear improvement for these non-cycled experiment 

● next steps:
 finish paper on CML data assimilation

 conduct longer-term fully-cycled BACY experiments and study CML impact 
on FSS and observation error statistics

 general quality control, spatial thinning/superobbing, bias correction

 further study impact of parameters like obs. error, localization, etc.



Thank you for your attention!


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

