

RealPEP P1- radar-based QPE

Status on the most recent QPE-products and snow analyses provided for RealPEP and Outlook

Ju-Yu Chen Silke Trömel, Clemens Simmer, Alexander Ryzhkov

01/02/2022

Institute for Geosciences, Department of Meteorology, Uni Bonn

Outline

- QPE of the flooding event in western Germany on 14/07/2021
 - ✓ Rainfall algorithms based on the method of the 1st work package (Chen et

al. 2021)

- \checkmark Juxpol radar used as gap fillers
- ✓ RD-QVPs of radar variables
- Snow retrievals based on polarimetric variables

QPE of the flooding event on 14/07/2021

Before and after images from the Ahr and Eifel regions

https://www.dw.com/en/flooding-in-germany-before-and-after-images-from-the-ahr-andeifel-regions/a-58299008

Rain map composite

QPE Composite

The value of the composed grid is the weighted average of data from all available heights, with the quality values as the weights.

Quality index :

the sampling volume of the radar beam per gate depending on range and aperture.

(ESS/NHB/FLD/OFT) Height

4 DWD C-band radars

Evaluated with DWD rain gauge measurements

4 DWD C-band radars

4 DWD C-band radars + X-band JUXPOL

8

4 DWD C-band radars

4 DWD C-band radars + X-band JUXPOL

Evaluated with DWD rain gauge measurements – R(Z)+R(KDP)

City of Bonn rain gauge measurements

4 DWD

Evaluated with DWD rain gauge measurements – R(AH)+R(KDP)

City of Bonn rain gauge measurements

RD-QVP (Range-defined QVP)

Data from all elevation angles are averaged according to the specified range using an inverse distance weighting:

- ✓ R < 100 km w = 1
- \checkmark R > 100 km w = IDW

ESS radar

pronounced vertical gradients in the lowest 3 km near the surface

UNI BONN MRR

Warm rain processes (collision-coalescence) play the dominant role and lead to an underestimation of radarbased QPE.

Conclusions

- Juelich X-band radar provides data from lower altitudes and improves QPE performances especially for R(Z)-based products.
- Polarimetric variable-based QPEs still show large underestimation due to the pronounced vertical gradient of Z and KDP below the ML.
- A correction/consideration of the vertical profile of Z (VPR) or KDP is needed for more accurate QPE products.

Near future work

Snow retrievals based on polarimetric variables – S(Z,KDP)

 σ (canting angle distribution) linearly increases from the DGL towards the ground

 \rightarrow 10° within the DGL (T=-10 deg)

 \rightarrow up to 40° right above the top of the ML/ground

Conclusions and Near future work

S(Z,KDP) has lower errors and much higher CC values than S(Z).
Wind advection plays an important role in snowfall estimation and needs to be considered.

-- Thanks for your listening --

