

RealPEP P3: On the Assimilation of Polarimetry-Derived Hydrometeor Mixing Ratios in Germany

RealPEP-SINFONY Meeting, 28th-29th April 2022

Lucas Reimann

Background and Hypothesis

Background

- Single-polarization radar moments: direct cloud-precipitation microphysical information contained only in (horizontal) radar reflectivity (Z_H)
 - \rightarrow Z_H is **insufficient** to describe these microphysics alone
- Dual-polarization radar moments contain additional information about cloud-precipitation microphysics compared to Z_H

Hypotheses

The assimilation of dual-polarization radar observations in NWP models via estimators of hydrometeor mixing ratios (HMRs) can improve quantitative precipitation forecasts (QPFs) with respect to the assimilation of Z_H alone

General Approach

- 1. **Derivation** of HMRs as liquid/ice water contents (LWCs/IWCs)
 - from observations of DWD's dual-polarization C-band radar network
 - via the LWC(Z_H,Z_{DR},A_H,K_{DP})-estimator adjusted to the German climatology suggested by Reimann et. al 2021 and the IWC(Z_H,Z_{DR}, K_{DP})-estimator suggested by Carlin et al. 2021
- 2. "**Superobing**" of derived data: spatial elevation-wise pie-piece averaging of LWC/IWC data to Cartesian grid with 10km resolution
- 3. First guess LWC/IWC projected, linearly interpolated and superobed onto same superobing grid
- 4. **Assimilation** of superobed LWCs/IWCs with first guess counterparts and preliminary observation error of log(LWC/IWC)=0.5 (based on DSDs) with KENDA in DWD's ICON-D2 model
- 5. **Evaluation** of produced QPFs

Assimilation Strategy

LWC/IWC assimilation difficulties

- LWC/IWC estimates only usable if data has sufficient quality (RHO_{HV}>0.85/0.90)
 - no LWCs/IWCs available in low-intensity precipitation far from the radar or in precipitation-free regions
- Used LWC/IWC-estimators partially based on Z_H
 - assimilation of LWCs/IWCs in parallel with Z_H at same superobing points not straightforward due to possibly non-zero co-variances

3 Assimilation Configurations

- 1. **CONV**: Assimilation of conventional observations only
- 2. **CONV+Z_H**: Assimilation of conventional observations and volumetric Z_H observations as operational
- CONV+Z_H+LWC/IWC: Assimilation of conventional observations plus LWC/IWC observations where LWC/IWC data trustworthy plus Z_H data elsewhere

Considered Events

52°N

50°N

48°N

54°N

52°N

50°N

48°N

54°N

52°N

50°N

48°N

2017-07-19 00:00:00 2017-07-19 04:00:00 2017-07-19 08:00:00 2017-07-19 12:00:00

2017-07-19 16:00:00

2017-07-20 04:00:00

6°E 9°E 12°E 15°E

2017-07-20 08:00:00 2017-07-20 12:00:00 2017-07-20 16:00:00

Convective rainfall 19th to 20th July 2017

Stratiform rainfall 24th to 26th July 2017

-12

10

54°N

Results

Single-Observation Experiments

Purpose

- Answer question: does assimilation of LWC/IWC with chosen observation error and assimilation of Z_H lead to increments of comparable size?
- If not: increment "jumps" may lead to problems in the LETKF step

Strategy

- Assimilation of exclusively one superobing point (L1, L2, ..., I1, I2, ... in right figure) at a time. 4 LWC, 4 IWC.
- For each point assimilation of corresponding Z_H or LWC/IWC
- Comparison of increments produced by Z_H and LWC/IWC

Radar Prötzel, 1.5° elevation, 25-07-2017 2 UTC

Single-Observation Experiments: LWC

Findings:

- Relative positions of deterministic first guesses, ensemble means & observations similar
- Deterministic (upper row left figure): if relative positions of first guess and observation similar for Z_H and LWC the produced increments are similar (e.g. black and red curves)
- Ensemble mean (lower row left figure): if relative absolute differences between first guess ensemble mean and observation are similar the ensemble mean absolute increments are similar

Single-Observation Experiments: IWC

Findings:

- Relative positions of deterministic first guesses, ensemble means & observations different
- Deterministic (upper row left figure): if relative difference between first guess and observation similar for Z_H and IWC the produced increments are similar (e.g. orange curve)
- Ensemble mean (lower row left figure): if relative absolute difference between first guess ensemble mean and observation is similar the ensemble mean absolute increments are similar

First Guess Evaluation: Stratiform Event

Percentual differences in fss timeseries means (CONV+ Z_H +HMR minus CONV+ Z_H)

LWC full -	-0.24	-0.23	-0.46	-0.91	1.28	-9.04				
LWC day 1 -	-0.32	-0.09	-0.12	-0.38	-1.08	-4.74				
LWC day 2 -	-0.39	-0.33	-0.06	-0.49	1.62	-29.39				
LWC day 3 -	-0.02	-0.28	-1.16	-1.82	3.40	7.32				
IWC full -	-0.42	-0.67	-1.06	-3.31	-5.17	-10.09				
IWC day 1 -	-0.39	-0.65	-0.71	-3.32	-7.15	-13.20				
IWC day 2 -	-0.66	-0.77	-0.87	-3.35	-3.83	2.15				
IWC day 3 -	-0.20	-0.59	-1.57	-3.27	-4.52	-19.24				
	0.1 0.5 1.0 2.0 4.0 8.0 threshold (mm)									

Findings:

- FSS very similar for CONV+Z_H and CONV+Z_H+LWC configuration, no systematic differences. Improvements in some situations for e.g. 4 mm threshold
- CONV+Z_H+IWC configuration rather leads to FSS reduction, systematic deterioration for e.g. 2 mm threshold. Though, some improved situations for 8.0 mm threshold

First Guess Evaluation: Stratiform Event

Differences in bss timeseries means (CONV+ Z_H +HMR minus CONV+ Z_H ; *100) -0.49 -0.03 -0.02 -0.24 -2.76 LWC full - -0.96 LWC day 1 - -0.79 -0.99 -0.43 -0.03 0.34 -0.23 -2.54LWC day 2 - -1.53 -0.79 -0.39-0.47-0.04 LWC day 3 - -0.56 -0.250.33 0.09 -0.45 -4.74 IWC full - 1.96 -1.08 -0.88 -2.15 -2.341.78 IWC day 1 - -1.07 -0.66 -0.32 -0.78 -2.38 -3.35 IWC day 2 -0.02 -2.57 -1.13 -0.46 -0.65-1.85IWC day 3 --2.97 -2.36 -3.11 -3.52 9.16 1.95 4.0 8.0 0.1 0.5 1.0 2.0 threshold (mm)

Findings:

40

- BSS very similar for CONV+Z_H and CONV+Z_H+LWC configuration, no systematic differences. Improvements in some situations for e.g. 0.5/2 mm threshold
- CONV+Z_H+IWC configuration rather leads to FSS reduction, systematic deterioration for e.g. 2 mm threshold. Though, some improved situations for 8.0 mm threshold

First Guess Evaluation: Convective Event

Percentual differences in fss timeseries means (CONV+ Z_H +HMR minus CONV+ Z_H)

LWC full -	-0.95	-2.98	-2.31	-2.47	-4.43	-5.08				
LWC day 1 -	1.64	-1.57	-1.89	-0.59	-0.25	-1.84				
LWC day 2 -	-2.16	-3.62	-2.50	-3.32	-6.61	-7.06				
IWC full -	-0.27	-2.91	-3.13	-6.04	-5.97	-5.86				
IWC day 1 -	0.89	-5.54	-6.77	-7.94	-7.06	-6.30				
IWC day 2 -	-0.81	-1.74	-1.50	-5.19	-5.40	-5.60				
	0.1	0.5	1.0	2.0	4.0	8.0				
Findings:										

- FSS for CONV+Z_H+LWC configuration enhanced towards middle of period where most observations active, systematically deteriorated towards second half of period especially for lower thresholds
- CONV+Z_H+IWC configuration rather leads to systematic FSS deterioration for e.g. 0.5/2 mm threshold.

First Guess Evaluation: Convective Event

Differences in bss timeseries means (CONV+ Z_H +HMR minus CONV+ Z_H ; *100) -0.19 2.16 LWC full --1.70 -1.82 -1.69 -1.69

WC day 1 -	0.60	0.06	-0.12	0.18	1.12	1.61			
WC day 2 -	-3.99	-3.46	-3.52	-3.56	-1.49	2.72			
IWC full -	-1.21	-1.63	-2.04	-2.70	-2.20	1.05			
WC day 1 -	-0.73	-0.92	-1.23	-1.16	-0.59	0.39			
WC day 2 -	-1.69	-2.34	-2.86	-4.24	-3.81	1.72			
	0.1 0.5 1.0 2.0 4.0 8.0 threshold (mm)								

Findings:

- BSS for CONV+Z_H+LWC configuration improved towards middle of period for higher thresholds. Deterioration towards second half of period for lower thresholds
- **CONV+Z_H+IWC** configuration rather leads to FSS reduction, systematic deterioration for e.g. 2 mm threshold. Though, some improved situations for 8 mm threshold

Observation-Minus-FirstGuess Statistics

- Stratiform event: LWC distribution quite symmetric but small positive bias; IWC distribution exhibits tail to positive values; without tail small negative bias
- Convective event: LWC distribution has tail to positive values and positive bias; IWC distribution has tail to positive values, without tail no considerable bias

First Guess Evaluation with Bias Correction

Stratiform event, LWC

F22	Percentual differences in fss timeseries means (CONV+ Z_H +HMR minus CONV+ Z_H)						BSS Differences in bss timeseries mear (CONV+ Z_H +HMR minus CONV+ Z_H ; *						
No Correction full	-0.24	-0.23	-0.46	-0.91	1.28	-9.04	No Correction full	-0.96	-0.49	-0.03	-0.02	-0.24	-2.76
No Correction day 1	-0.32	-0.09	-0.12	-0.38	-1.08	-4.74	No Correction day 1	-0.79	-0.43	-0.03	0.34	-0.23	-0.99
No Correction day 2	-0.39	-0.33	-0.06	-0.49	1.62	-29.39	No Correction day 2	-1.53	-0.79	-0.39	-0.47	-0.04	-2.54
No Correction day 3	-0.02	-0.28	-1.16	-1.82	3.40	7.32	No Correction day 3	-0.56	-0.25	0.33	0.09	-0.45	-4.74
Bias Correction full	-0.12	-0.07	-0.26	-0.54	-0.09	-16.50	Bias Correction full	-0.36	0.32	0.98	0.76	-0.01	-4.28
Bias Correction dav 1	-0.49	-0.23	-0.48	-0.55	-2.54	-7.17	Bias Correction day 1	-0.73	-0.08	0.14	0.68	0.48	-0.40
Bias Correction day 2	-0.00	-0.09	-0.01	-0.44	2.20	-15.38	Bias Correction day 2	-0.07	0.58	1.88	1.30	-0.37	-1.92
Bias Correction day 3	0.11	0.09	-0.31	-0.65	-0.00	-29.76	Bias Correction day 3	-0.27	0.47	0.92	0.30	-0.15	-10.52
	0.1	0.5	1.0 thresho	2.0 Id (mm)	4.0	8.0		0.1	0.5	1.0 thresho	2.0 ld (mm)	4.0	8.0

FSS: bias correction leads to improvement for full period for lower thresholds 0.1-2.0 mm

BSS: bias correction leads to improvement for full period for all thresholds except for 8.0 mm and to even better BSS for thresholds 0.5-2.0 w.r.t. CONV+ Z_{H} configuration

Conclusions

- Single-observation experiments suggest that if deterministic & ensemble mean first guess & observations are distributed similarly for Z_H and LWC/IWC the increments are similar
 - → The preliminary chosen observation error of log(LWC/IWC)=0.5 appears to be reasonable
- Configuration CONV+Z_H+LWC leads to
 - a. no systematic improvements in FSS/BSS over configuration CONV+Z_H for stratiform rainfall event, though in some situations improvements are visible
 - b. improvements in FSS/BSS over configuration CONV+Z_H especially for first day of convective period (squall line pass-through) and especially for BSS at higher thresholds
- Configuration CONV+Z_H+IWC leads to partly systematic deterioration in FSS/BSS over configuration CONV+Z_H for stratiform & convective events, though in few situations improvements are visible
- Obs-minus-fg distributions show biases and partly tails to positive values for both LWC & IWC. Bias correction for stratiform event in configuration CONV+Z_H+LWC overall improves results

Near-Future Work

- Test influence of obs-minus-fg distribution modification on the other experiments
- Produce and evaluate 24h-forecasts
- Include heavy stratiform rainfall event in connection with low-pressure system "Bernd" from 13th to 14th July 2021 (4 times higher radar range resolution)

Thank you! Questions?

Appendix

before correction

after correction

Convective event obs-minus-fg distribution bias correction

