Improvements on the Assimilation of radar reflectivities (P3)

R. Potthast, K. Vobig

Deutscher Wetterdienst Wetter und Klima aus einer Hand

TCI: Motivation & Recap

- even for large discrepancies between obs./sim. REFL LETKF might give small increments due to very small ensemble spread σ[Z]<<1
- approach: increase spread via (additive) targeted covariance inflation (TCI) based on correlations between Z and QV
- overall, TCI results are promising
 - production of "new" REFL cells (consistent with observations)
 - positive impact on fractional skill score (w.r.t. REFL)

Evolution of REFL

Deutscher Wetterdienst

DWD

Verification: Fractional Skill Score

- performing cycle starting at 7 UTC
- TCI applied at each assimilation (hourly)
- FSS for two dBZ thresholds shown

positive impact of TCI on FSS DWD

9

- AIREP/TEMP observation error statistics for humidity:
 - negative impact of TCI
 - contribution (positive/negative) to statistics highly time/location dependent
 - time/spatial/process dependence of correlations
- optimize the capturing and use of correlations of TCI method
 - better data filtering/pre-processing necessary
 - towards more "process-aware" TCI
 - first step here: only include data associated with new emerging cells for correlation analysis

Cell Detection

adate:20190603130000, ensemble_slice:slice(1, None, None)

- Implemented simple algorithm for the detection of new cells
- employs time series of (binned) Radar data at 0-3000m
- gives area of new cells at certain leadtime
- here: 'mask' shows area of 5 new cells detected for 20min leadtime

Cell Drifting: Statistical Basis

statistics for heights=slice('25', '45', None), x=8.96+-0.5, y=51.91+-0.5

- using statistical analysis of wind fields for obtaining dominant angle and velocity of horizontal wind in region of detected cells
- next: shift area associated with each cell using the corresponding wind field information → "backward propagation in time" / obtain environment cell eventually originated from

DWD

9

Cell Drifting: Application

cell-label:1, adate:20190603130000, leadtimeBase:20min, ensemble slice:slice(1, None, None)

- zoom into the area of one of the detected cells
- assumed drift seems to match "real" drift of structure in QV field

DWD

9

Wetter und Klima aus einer Hand

Correlation Calculation: Procedure

- previous plot already hints at relationship between Z "now" and QV at an earlier time (contained within shifted area)
- use the previously shown cell areas (for each time t and cell c) $A_{c,t}$ for calculating spatial mean of ensemble perturbations $dQV_{e,h}$ and dZ_e (for each ICON level h and ensemble member e) yielding $dQV_{e,h,c,t}$ and $dZ_{e,c,t'}$
- given t, t', h the correlation $corr_{t,t',h}$ is then based on the dataset $\{(dQV_{e,h,c,t}, dZ_{e,c,t'}) \mid all members e and all cells c\}$
- perform this correlation calculation for several t, t' and all ICON levels h

Z-QV Correlation

- depiction of correlation between Z and QV (at variable height)
- QV shifted against Z by 0min or -20min
- clear maximum at around 6000-7000m height for QV

TCI: Next Steps

- further optimize the process/data-filtering
- use these "process-aware" correlations as a basis for the TCI approach
- for the application of these correlations (within the TCI approach) the procedure for their extraction is basically inverted:
 - check if discrepancies exist between obs./sim. REFL
 - check if spread for sim. REFL is vanishing
 - check if (obs.) cell has just emerged
 - use tailored Z-QV correlations for these regions

Radar Network of the DWD

Radar network of DWD (left); generation of superobservations (upper right); volume scan modus (lower-right)

- 16 Dualpolarization Radars with 3D-Volume scans every 5 minutes
 - radial winds (RW)
 - reflectivities (REFL)
 - dual polarization moments (DP)
- generation of superobservations
 - average over specific volume
 - makes handling of large data sets feasible

Radar-related Projects at DWD

- assimilate 2D REFL based on latent heat nudging
- assimilation of 3D-Volume Radar data via LETKF and EMVORADO (by Blahak and Zheng)

 - ◆ assimilation of REFL ✓
- assimilation of Radar-derived objects and seamless integration of Radar objects into nowcasting and short-range NWP
- Jana Mendrok works on extending EMVORADO to simulate DP (✔)
 - enables direct assimilation of DP
 - alternatively: "indirect" assimilation of DP via derived hydrometeor mixing ratios (→Lucas Reimann)

Radar-related Projects at DWD

- assimilation of nowcasted information⁽¹⁾
 - tested assim. of nowcasted information via LETKF (based on oscillator model / Lorenz 63 model system)
 - positive impact of assimilating nowcasted information demonstrated
 - first tests assimilating nowcasted states (REFL) with KENDA
- overall topic here: improve assimilation of REFL via targeted covariance inflation⁽²⁾ (TCI)

⁽¹⁾: R. Potthast et al., MWR, (2022), accepted for publication
 ⁽²⁾: K. Vobig et al., https://doi.org/10.1002/qj.4157, (2021)

TCI – Motivation & Basics

TCI: Motivation

- even for large discrepancies between observed/simulated REFL LETKF might still produce small increments
- problem: very small ensemble spread $\sigma[\mathbf{Z}] \ll 1$
- approach: increase spread via (additive) targeted covariance inflation (TCI)

TCI: Basics

• assume correlation of Z with model variable Ψ $Z'_i(\mathbf{r}) = Z_i(\mathbf{r}) + \alpha_{\mathrm{TCI}} (\Psi_i(\mathbf{r}) - \mu[\Psi(\mathbf{r})])$

• α_{TCI} serves as scaling factor for "strength" of TCI

• US

$$q_{v}^{\text{int}}(\lambda,\mu,l_{0},l_{1},\beta) \equiv \int_{\mathcal{A}} d\lambda' d\mu' f_{\beta}(\lambda'-\lambda,\mu'-\mu) \int_{h(l_{0})}^{h(l_{1})} q_{v}(\lambda',\mu',h) dh$$

- overall idea:
 - spread of q_v "imprinted" onto spread of Z
 - assim. "favors" members with more humidity: additional q_v (q_r,q_s,...) increments via corr.

integral details

- β: strength of running mean factoring in time uncertainty
- I₀, I₁, β determined via optimization of corr. coefficient

- several thresholds for data filtering and process determination
- α_{TCI} ----- "slope" of correlation

NWP: Assimilation Cycle

DWD 9 Wetter und Klima aus einer Hand

TCI: Technical Steps

- implemented via pre-processing feedback (fof) files before entering the LETKF
- apply TCI algorithm and alter simulated Z in feedback files
- each member processed separately
- use altered feedback files as input for LETKF

- fof.*: sim. + obs. quantities of ens. members
 → enter LETKF
- LETKF produces increments depending on innovations + Kalman gain

TCI – Single-Observation Experiments

Single-Observation Experiment

- study effects of TCI in single-observation (SO) experiment
 - assimilating only single reflectivity

- at (51.60°,8.35°,1035m) for 2019-06-03 at 12 UTC
- data from Radar station Flechtdorf at elevation angle 0.5°
- other observation set to 'passive' within feedback files
- relevant changes to "default" BACY settings
 - obs. error reduced to 2 dBZ
 - vertical localization increased to v_{loc}=10.3
 - no multiplicative cov. inflation / no relaxation to prior perturbation

DWD

 \bigcirc

SO Exp.: Correlations and Increments

- without TCI: no spread in Z at single observation at all
- with TCI: spread in Z is produced
 - result: analysis produces increments for Z (linearized) and q_v

SO Exp.: Evolution of REFL

- ass. at 12 UTC followed by 1h free forecast
- "new" cell
 emerges
 consistent with
 observed cell
- second cell
 only with LHN
 (out of spatial
 reach of TCI)

TCI – Beyond Single-Obs Exps.

Multi-Observation TCI

- previously: studied effects of TCI in SO experiments
- now: study effects of TCI applied to all radar data
- as before: TCI is applied via modification of feedback files before entering LETKF machinery
- prerequisites and effects of TCI application at **r**:
 - discrepancy between observed/simulated REFL
 - small ensemble spread
 - modify Z for all ensemble members via integrated q_v correlation

BACY Configurations

- "default": (mostly) default BACY configuration
 - assimilation of conv. data and REFL (at several elevations)
 - LHN may be turned on/off [±LHN]
 - assimilation takes place on 2019-06-03 at t0 = 12 UTC
- "custom": minor changes w.r.t. default configuration
 - serves as reference for assessing direct impact of TCI
 - increased first-guess check for REFL
 - TCI may be turned on/off [±TCI]

REFL: Assimilation

• TCI produces spread \rightarrow additional increments for REFL

Evolution of REFL (with LHN)

Deutscher Wetterdienst Wetter und Klima aus einer Hand

DWD

<Fußzeile>

Evolution of REFL (without LHN)

Deutscher Wetterdienst

DWD

Verification: Fractional Skill Score

- performing cycle starting at 7 UTC
- TCI applied at each assimilation (hourly)
- FSS for two dBZ thresholds shown

positive impact of TCI on FSS DWD

9

Summary and Outlook

tscher Wetterdienst r und Klima aus einer Hand

- overall, TCI results are promising
 - production of "new" cells (consister
 - positive impact on FSS
- AIREP/TEMP observation error
 - negative impact of TCI
 - contribution (positive/negative) to star
 - time/spatial/process dependence of
- optimize the capturing and use of correlations of TCI method
 - better data filtering/pre-processing necessary
 - towards more "process-aware" TCI

Outlook

- assim. of information on convective initiation
 - employ total column water vapor obtained from satellite data
 - also apply TCI-like approach (?)
- assim. of data from Commercial Microwave links (CMLs)
- assim. of nowcasted states
 - employ advanced nowcasting for assim. nowcasted states (REFL) with KENDA

Thank you for your attention!