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A hydrological model can be:
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Hydrological models can be used to check the accuracy of 

precipitation estimates

July 2021 events at Altenahr and Erftstadt-Blessem

(source: DW.com)

>200 fatalities, up to € 5.5 Billion in insured losses

For extreme floods, accurate precipitation estimates are crucial

Q1. Given different precipitation estimates (QPE) and hydrological 

models, what were the chances of exceeding the highest 

measured peakflow?

But event hydrographs are generally unavailable!

Q2. How do compare different methods of precipitation 

nowcasting with each other in improving the forecast lead time?
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Area (km2) 140 – 1670

Mean precipitation (mm/yr) 700 – 1070

Aridity index (-) 0.52 – 0.89

Mean discharge (mm/yr) 130 – 760

2.1 | Catchments

7 catchments draining the Eifel range
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2.2 | Models

PDE-based, 3D distributed model, hourlyConceptual, lumped, hourly

GR4H (Ficchì et al. 2019) ParFlow-CLM (Kollet & Maxwell, 2006, 2008)
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2.3 | Data

GR4H (Ficchì et al. 2019) ParFlow-CLM (Kollet & Maxwell, 2006)

Catchment-averaged inputs
- Precipitation (RADOLAN)
- 2-m air temperature (ERA5-LAND)

Catchment-averaged parameters
- 4 parameters, calibrated using discharge 

data (LANUV-NRW, LfU-RLP), 2007-2021
- Calibration needs definition of objective 

function and period of calibration → 12 
optimal parameter sets for each 
catchment

Cell-averaged inputs (for 2000x2000x15 cells over Central Europe, 
611m resolution)

- Precipitation (RADOLAN & ERA5-LAND)
- 2-m air temperature (ERA5-LAND)
- Surface pressure (ERA5-LAND)
- 10-m u and v wind components(ERA5-LAND)
- Surface solar/thermal radiation downwards 
(ERA5-LAND)

Cell-averaged parameters
- Topography: ASTER+MERIT DEMs
- Land cover: CLC2018, reclassed in 18 IGBP types
- Soil types: SoilGrids250m, grouped into 12 USDA classes 

and IHME
- 3 tested Manning’s n

Runs on local computer
Runs on GPUs of the JUWELS HPC system 

(4 nodes x 512 GiB)

0.2 s/m1/3 (HMann) 0.1 s/m1/3 (MMann) 0.02 s/m1/3 (LMann)
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3.1 | QPE products for the 14.07.2021

Chen et al. (2021)

Rain gauges

RZH
Horizontal 

reflectivity Zh

RZHKDP
Horizontal reflectivity 

Zh+ Specific differential 
phase KDP

RAVKDP

RAHKDP

RADOLAN GR4H

ParFlowCLM x3

x12

QPE products Hydrological models Peakflow estimations

12 Qpsim(GR4H, Rain gauges)

12 Qpsim(GR4H, RADOLAN)+
3 Qpsim(ParFlowCLM, RADOLAN)

12 Qpsim(GR4H, RZH)+
3 Qpsim(ParFlowCLM, RZH)

12 Qpsim(GR4H, RZHKDP)+
3 Qpsim(ParFlowCLM, RZHKDP)

12 Qpsim(GR4H, RAHKDP)+
3 Qpsim(ParFlowCLM, RAHKDP)

12 Qpsim(GR4H, RAVKDP)+
3 Qpsim(ParFlowCLM, RAVKDP)

Count the number 
of times 

simulations 
exceeded the 

historical peakflow 
for each QPE

Specific attenuation AV

+ Specific differential 
phase KDP

Specific attenuation AH

+ Specific differential 
phase KDP
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3.2 | Result 1: Differences between QPE products

Similar spatial pattern

Higher rainfall rates for RAHKDP and RAVKDP

At the pixel scale
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3.2 | Result 1: Differences between QPE products

All radar-based QPE underestimated the total 
precipitation from rain gauges

For most catchments, RAHKDP and RAVKDP are the 
ones that agreed most with estimations from rain gauges

Similar spatial pattern

Higher rainfall rates for RAHKDP and RAVKDP

At the pixel scale

At the catchment scale
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3.2 | Result 2: Chances of breaking the historical records of peakflow

Catchment Historical peakflow (m3/s)

Ahr @ Altenahr 236

Ahr @ Muesch 132

Erft @ Bliesheim 55.8

Erft @ Neubrueck 46.64

Kyll @ Densborn 180

Kyll @ Kordel 218

Rur @ Monschau 109.63

The effect of the QPE on the (simulated) 
severity of the event varied among catchments

1. Very high chances no matter what QPE product is used
2. Very low chances for the Rur @ Monschau
3. High dependency on QPE for the remaining catchments
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3.2 | Result 3: Uncertainties from model parameters vs. from QPE products

Additional uncertainty from model parameter estimation
GR4H simulations bracketed only HMann and MMann
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3.2 | Result 3: Uncertainties from model parameters vs. from QPE products

Largely influenced catchment Slightly influenced catchment

Model disagreement due to anthropogenic influence ?
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3.2 | Result 3: Uncertainties from model parameters vs. from QPE products

If we change from ParFlowCLM to GR4H, we tend to have 
lower peakflow estimates

𝐐𝐩𝐬𝐢𝐦 𝐆𝐑𝟒𝐇,𝐐𝐏𝐄 − 𝐐𝐩𝐬𝐢𝐦 𝐏𝐚𝐫𝐅𝐥𝐨𝐰𝐂𝐋𝐌,𝐐𝐏𝐄

𝐐𝐩𝐬𝐢𝐦 𝐏𝐚𝐫𝐅𝐥𝐨𝐰𝐂𝐋𝐌,𝐐𝐏𝐄

𝐐𝐩𝐬𝐢𝐦 𝐐𝐏𝐄,𝐌𝐨𝐝𝐱 − 𝐐𝐩𝐬𝐢𝐦 𝐑𝐀𝐃𝐎𝐋𝐀𝐍,𝐌𝐨𝐝𝐱

𝐐𝐩𝐬𝐢𝐦 𝐑𝐀𝐃𝐎𝐋𝐀𝐍,𝐌𝐨𝐝𝐱

If we change from RADOLAN to any other QPE, we tend to 
have higher peakflow estimates
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4.1 | QPN methods and framework for hydrological evaluation

Based on the QPE product RAVKDP

2 deterministic: Advection and SPROG (Seed, 2003) + 1 stochastic, with 20 members : STEPS (Bowler et al., 2006)

01:00 UTC 02:00 UTC 03:00 UTC

Observed (QPE)

Forecasted (QPN)

Simulated discharge ~ observed

Forecasted discharge

Hydrological 

model

Hydrological 

model

Hydrological 

model
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4.1 | QPN methods and framework for hydrological evaluation

Based on the QPE product RAVKDP

2 deterministic: Advection and SPROG (Seed, 2003) + 1 stochastic, with 20 members : STEPS (Bowler et al., 2006)

Spawned each hour between 01h00 and 18h00 of 
14.07.2021
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4.1 | QPN methods and framework for hydrological evaluation

Based on the QPE product RAVKDP

2 deterministic: Advection and SPROG (Seed, 2003) + 1 stochastic, with 20 members : STEPS (Bowler et al., 2006)

Evaluation: construct a virtual forecasted hydrograph for each lead time

Time Q, LT = 1h Q, LT = 2h Q, LT = 4h

01h00 Q(1h00) spawned at 00h00 Q(1h00) spawned at 23h00 j-1 Q(1h00) spawned at 21h00 j-1

02h00 Q(2h00) spawned at 01h00 Q(2h00) spawned at 00h00 Q(2h00) spawned at 22h00 j-1

03h00 Q(3h00) spawned at 02h00 Q(3h00) spawned at 01h00 Q(3h00) spawned at 23h00 j-1

04h00 Q(4h00) spawned at 03h00 Q(4h00) spawned at 02h00 Q(4h00) spawned at 00h00

05h00 Q(5h00) spawned at 04h00 Q(5h00) spawned at 03h00 Q(5h00) spawned at 01h00

06h00 Q(6h00) spawned at 05h00 Q(6h00) spawned at 04h00 Q(6h00) spawned at 02h00

Virtual because assembled out of different hydrographs
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4.1 | QPN methods and framework for hydrological evaluation

Based on the QPE product RAVKDP

2 deterministic: Advection and SPROG (Seed, 2003) + 1 stochastic, with 20 members : STEPS (Bowler et al., 2006)

Evaluation: construct a virtual forecasted hydrograph for each lead time

Simulated hydrograph with QPE to be compared with forecasted 
hydrograph

Evaluation metric

Skill =
error(Bench)

error(QPN) + error(Bench)

Chen et al. (2017); Hersbach (2000)

error(QPN) < error(Bench) ֜ Skill > 0.5

Error estimated using the continuous rank probability score (CRPS) 
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4.2 | Result 1: Hydrological persistence as benchmark

No differences between the three methods

Decreasing skill with increasing lead time

A rebound in the skill curves for the Ahr river, 
related to rising/falling limbs of the hydrograph

Usefulness that can last as long as 48 h, 
except for some cases

No significant relation with catchment size

No significant effect of the hydrological model
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4.2 | Result 2: Zero-precipitation nowcasts as a benchmark

Similar conclusions, but no rebound effect!!

Lower skill compared to hydrological 
persistence, but more costly with additional 
model run
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4.2 | Result 3: Effect of skill threshold

Changing the skill threshold has a significant impact!

QPN are now useful only up to 12 h at most!

error(QPN) < error(Bench) ֜ Skill > 0.5

error QPN <
1

2
error Bench ֜ Skill >

2

3



5| Conclusions

Slide 22

Including specific attenuation helped improve the radar-based QPE products 

Evaluation of QPE products

The choice of QPE products impacted the ability of models to anticipate a record-breaking flood 

The QPN methods behaved similarly. Possible differences in a less predictable, more spatially variable precipitation event?

Added value of QPN methods

The choice of the benchmark model and the skill threshold impacts the evaluation of the QPN

There is general agreement between GR4H and ParFlowCLM, except for highly influenced catchments. Adopting a very low 
Manning’s explains most of the discrepancies between the models

Comparison of modeling philosophies

At this stage, running a conceptual model seems more advantageous, but the distributed model allows for estimations in all 
points of the domain, regardless of discharge data availability



Thank you for your attention!

Questions?
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