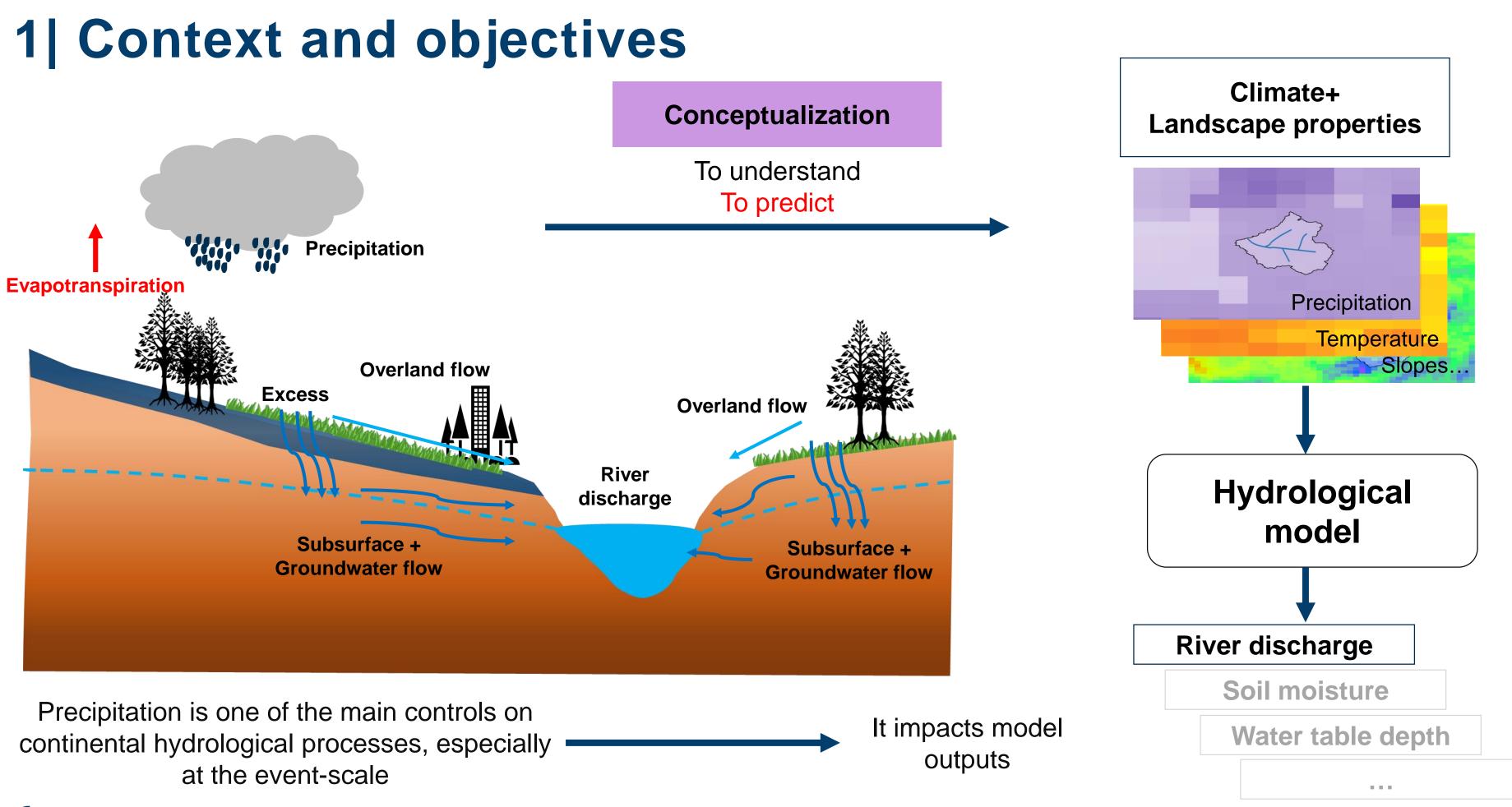


Towards hydrological validation of radar-based precipitation estimates and nowcasts M. Saadi^{1,2}, C. Furusho-Percot^{1,2}, A. Belleflamme^{1,2}, J.-Y. Chen³, R. Reinoso-Rondinel³, S. Trömel^{3,4}, S. Kollet^{1,2} ¹FZJ/IBG-3, ²Geoverbund ABC/J/HPSC-TerrSys, ³UniBonn/Dept. of Meteorology, ⁴Geoverbund ABC/J/CPEX-Lab | P1, P2, P4

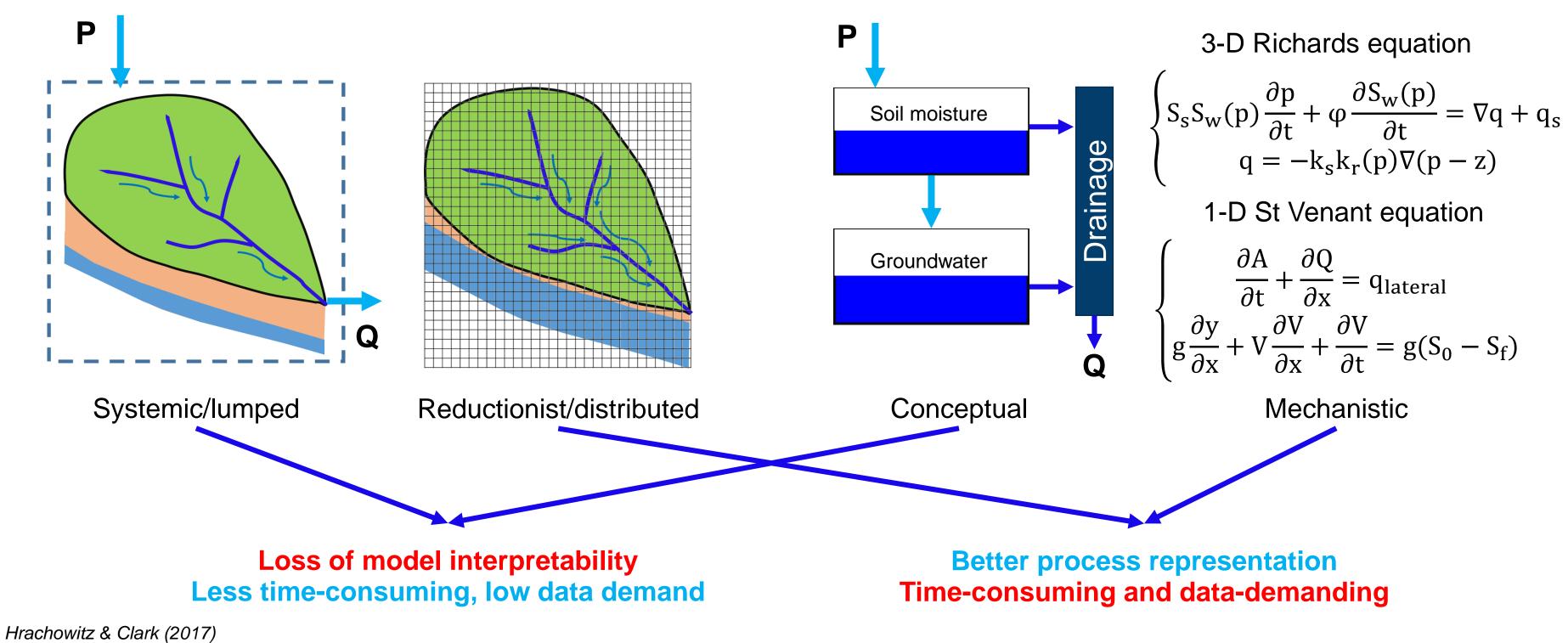
2022-04-28 | RealPEP meeting

Mitglied der Helmholtz-Gemeinschaft



1 Context and objectives

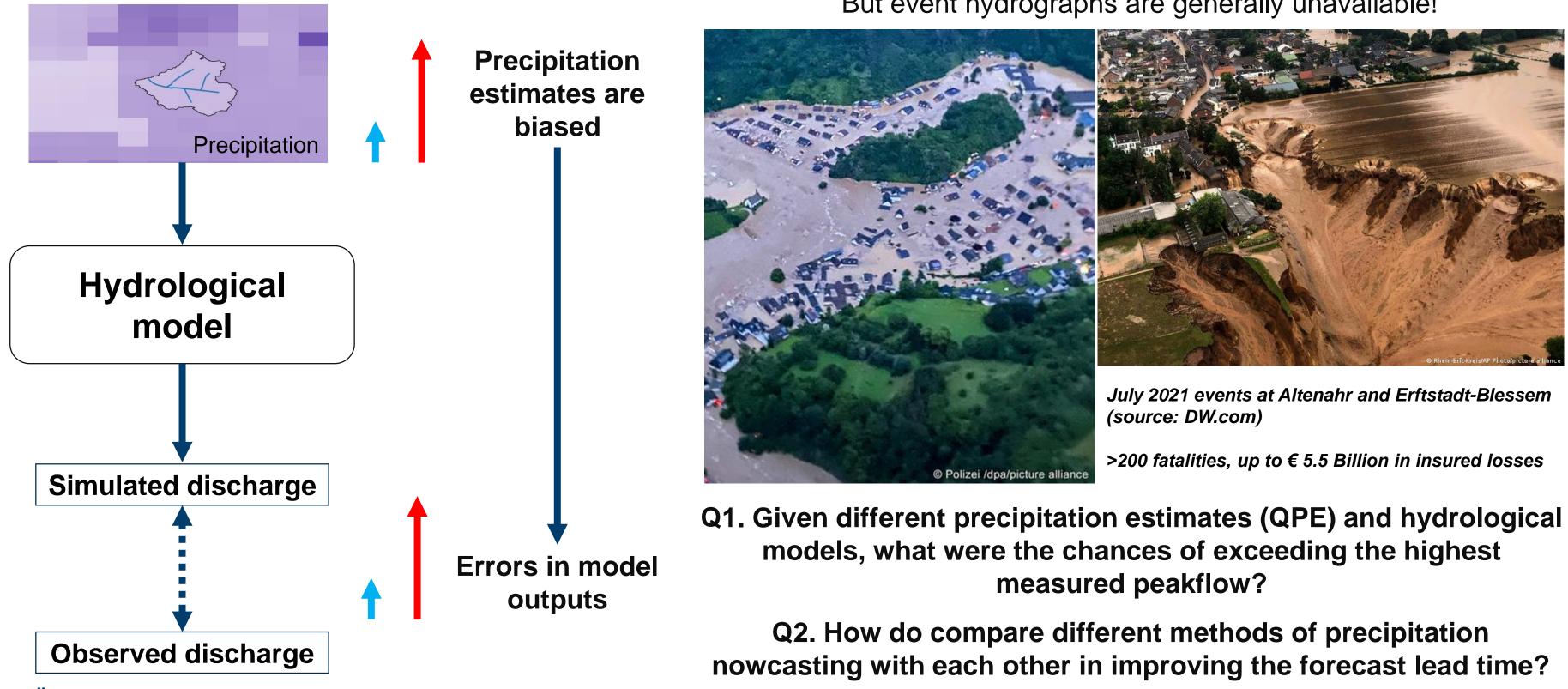
A hydrological model can be:



JÜLICH Mitglied der Helmholtz-Gemeinschaft

1 Context and objectives

Hydrological models can be used to check the accuracy of precipitation estimates

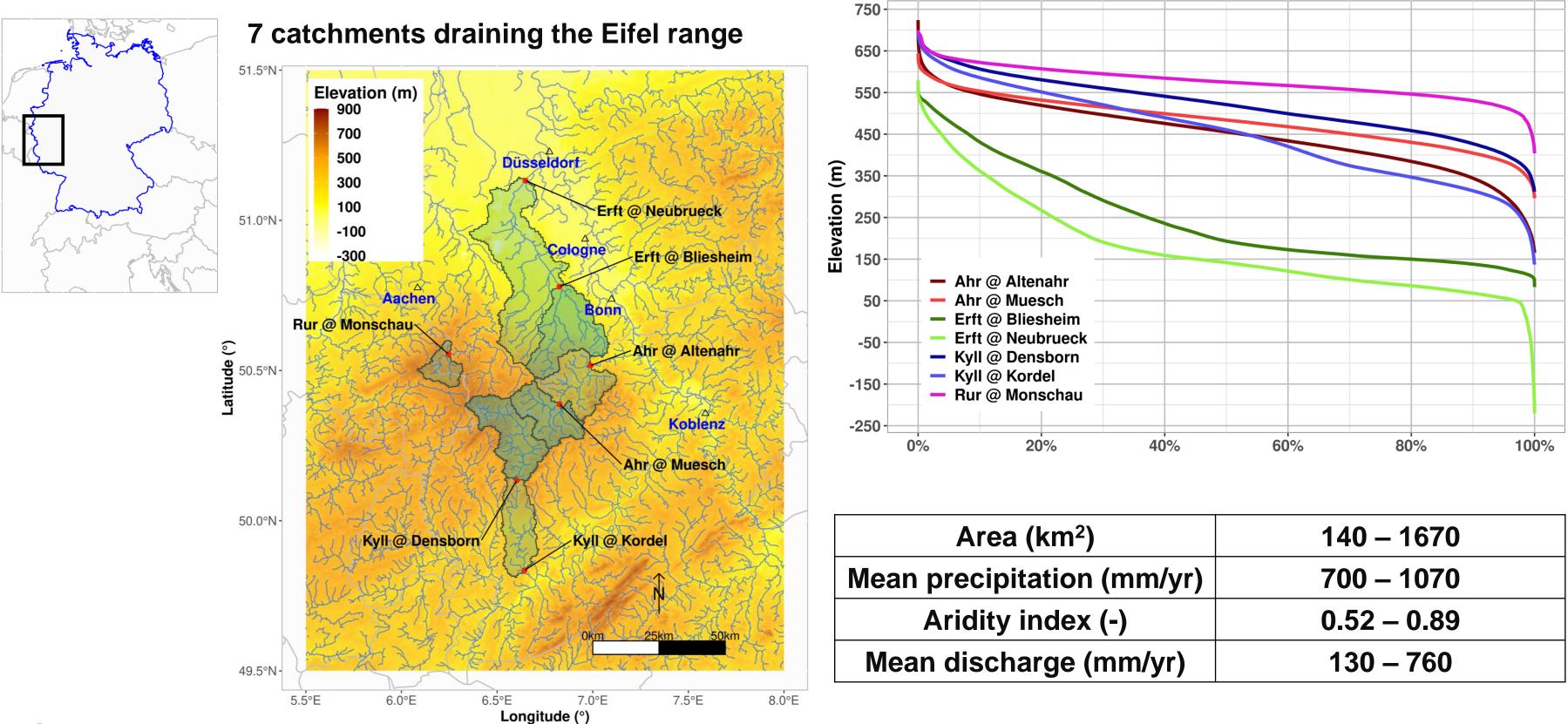


LICH Mitglied der Helmholtz-Gemeinschaft

For extreme floods, accurate precipitation estimates are crucial But event hydrographs are generally unavailable!

2 Catchments, models and data

2.1 | Catchments



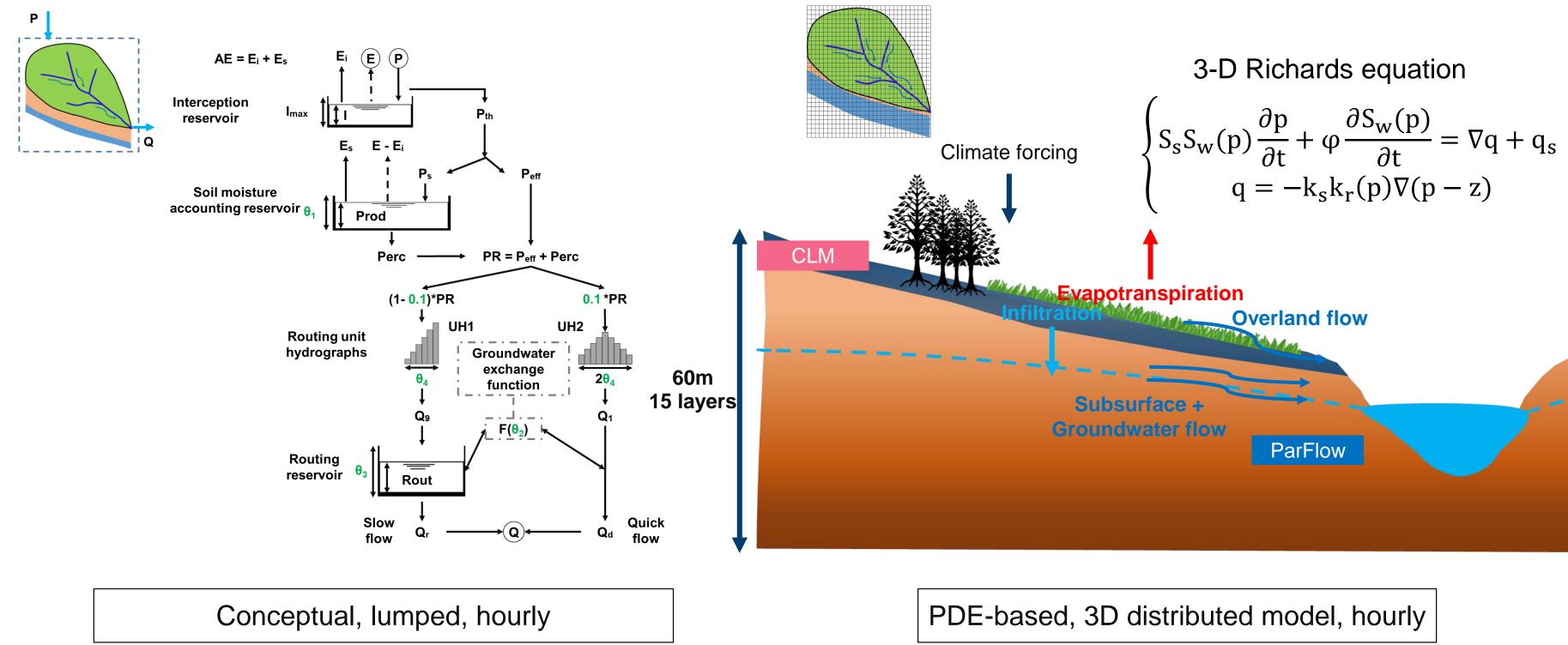
JÜLICH Mitglied der Helmholtz-Gemeinschaft

ı (km²)	140 – 1670
itation (mm/yr)	700 – 1070
index (-)	0.52 – 0.89
arge (mm/yr)	130 – 760

2 Catchments, models and data

2.2 | Models

GR4H (Ficchì et al. 2019)



ParFlow-CLM (Kollet & Maxwell, 2006, 2008)

Slide 6

2 Catchments, models and data

2.3 | Data

GR4H (Ficchì et al. 2019)

Catchment-averaged inputs

- Precipitation (RADOLAN)
- 2-m air temperature (ERA5-LAND)

ParFlow-CLM (Kollet & Maxwell, 2006)

Cell-averaged inputs (for 2000x2000x15 cells over Central Europe, 611m resolution)

- 2-m air temperature (ERA5-LAND)
- Surface pressure (ERA5-LAND)
- (ERA5-LAND)

Catchment-averaged parameters

- 4 parameters, calibrated using discharge data (LANUV-NRW, LfU-RLP), 2007-2021
- Calibration needs definition of objective function and period of calibration \rightarrow 12 optimal parameter sets for each catchment

Cell-averaged parameters

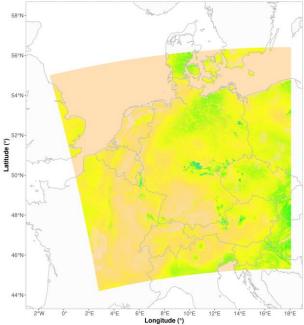
- Topography: ASTER+MERIT DEMs
- and IHME
- 3 tested Manning's n

0.2 s/m^{1/3} (HMann) 0.1 s/m^{1/3} (MMann)

Runs on GPUs of the JUWELS HPC system (4 nodes x 512 GiB)

Runs on local computer

- Precipitation (RADOLAN & ERA5-LAND) - 10-m u and v wind components(ERA5-LAND) - Surface solar/thermal radiation downwards



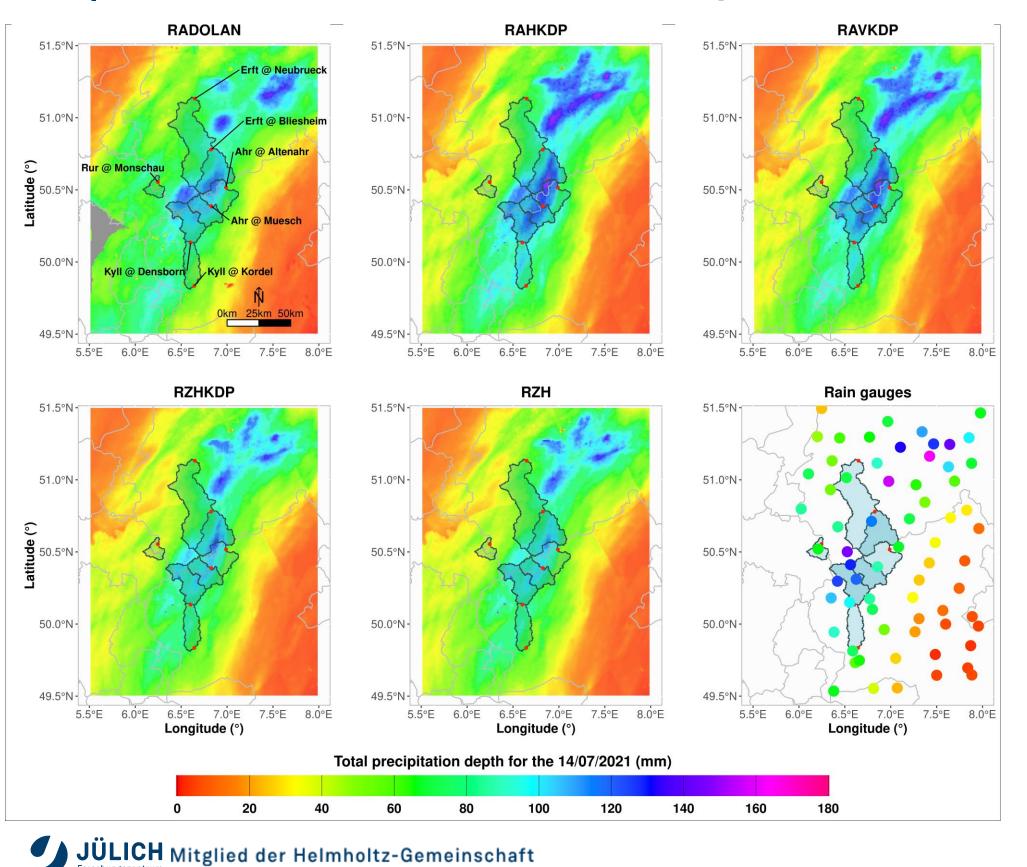
- Land cover: CLC2018, reclassed in 18 IGBP types - Soil types: SoilGrids250m, grouped into 12 USDA classes

0.02 s/m^{1/3} (LMann)

3 Q1. Impact of QPE & modeling choices on peakflow 3.1 | QPE products for the 14.07.2021 **QPE** products Hydrological models **Peakflow estimations** 12 Q_{psim}(GR4H, Rain gauges) Rain gauges 12 Q_{psim}(GR4H, RADOLAN)+ **GR4H** RADOLAN x12 3 Q_{psim}(ParFlowCLM, RADOLAN) 12 Q_{psim}(GR4H, RZH)+ 3 Q_{psim}(ParFlowCLM, RZH) Horizontal **RZH** reflectivity Z_h 12 Q_{psim}(GR4H, RZHKDP)+ 3 Q_{psim}(ParFlowCLM, RZHKDP) Horizontal reflectivity RZHKDP $Z_{\rm h}$ + Specific differential phase K_{DP} ParFlowCLM **x3** Specific attenuation A_H 12 Q_{psim}(GR4H, RAHKDP)+ RAHKDP + Specific differential 3 Q_{psim}(ParFlowCLM, RAHKDP) phase K_{DP} 12 Q_{psim}(GR4H, RAVKDP)+ 3 Q_{psim}(ParFlowCLM, RAVKDP) Specific attenuation A_v RAVKDP + Specific differential phase K_{DP}

Count the number of times simulations exceeded the historical peakflow for each QPE

3.2 | Result 1: Differences between QPE products

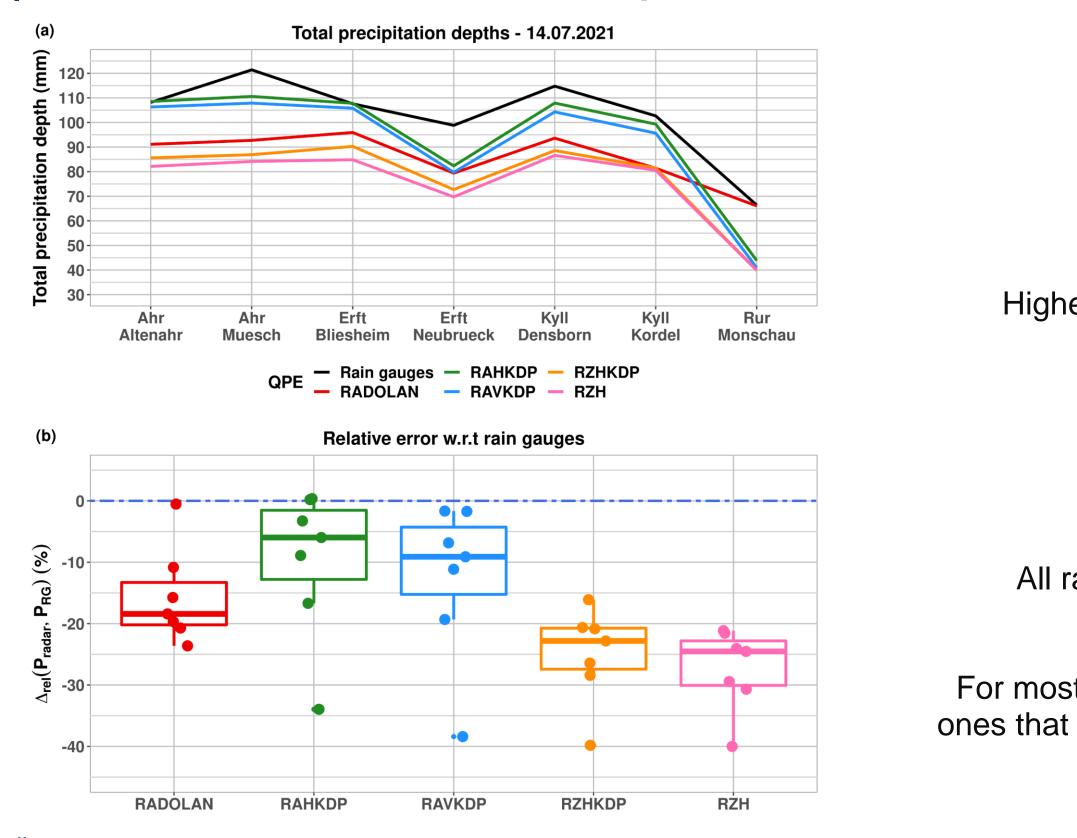


At the pixel scale

Similar spatial pattern

Higher rainfall rates for **RAHKDP** and **RAVKDP**

3.2 | Result 1: Differences between QPE products



JÜLICH Mitglied der Helmholtz-Gemeinschaft

At the pixel scale

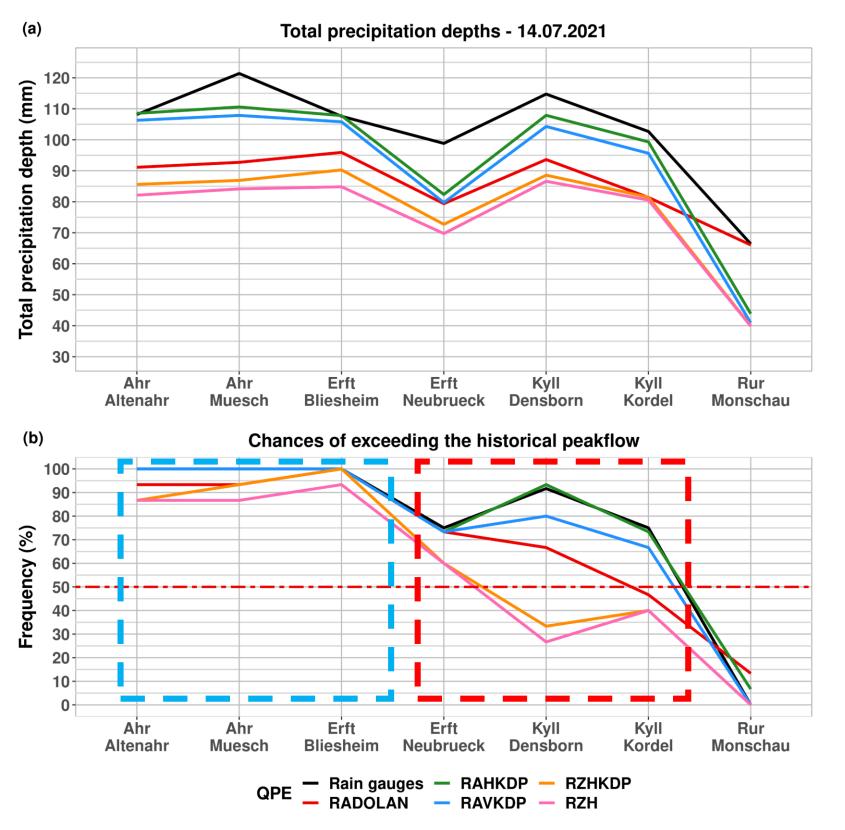
Similar spatial pattern

Higher rainfall rates for **RAHKDP** and **RAVKDP**

At the catchment scale

- All radar-based QPE underestimated the total precipitation from rain gauges
- For most catchments, **RAHKDP** and **RAVKDP** are the ones that agreed most with estimations from rain gauges

3.2 | Result 2: Chances of breaking the historical records of peakflow



JULICH Mitglied der Helmholtz-Gemeinschaft

Catch

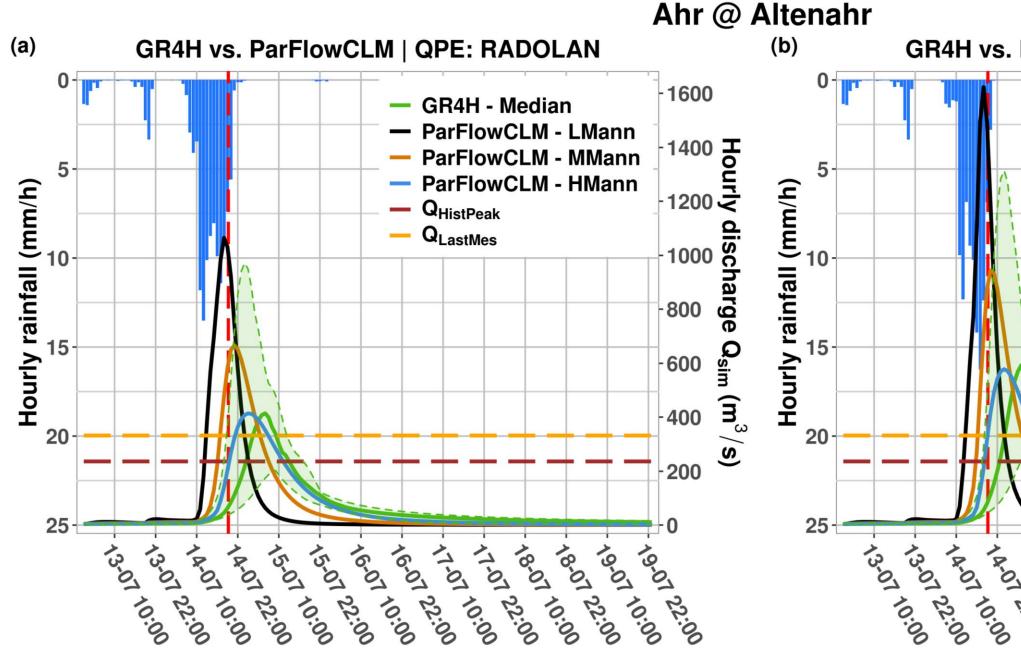
Ahr @ A Ahr @ N Erft @ Bli Erft @ Ne Kyll @ De Kyll @ Rur @ Mo

The effect of the QPE on the (simulated) severity of the event varied among catchments

ment	Historical peakflow (m ³ /s)
ltenahr	236
/luesch	132
iesheim	55.8
eubrueck	46.64
ensborn	180
Kordel	218
onschau	109.63

1. Very high chances no matter what QPE product is used 2. Very low chances for the Rur @ Monschau 3. High dependency on QPE for the remaining catchments

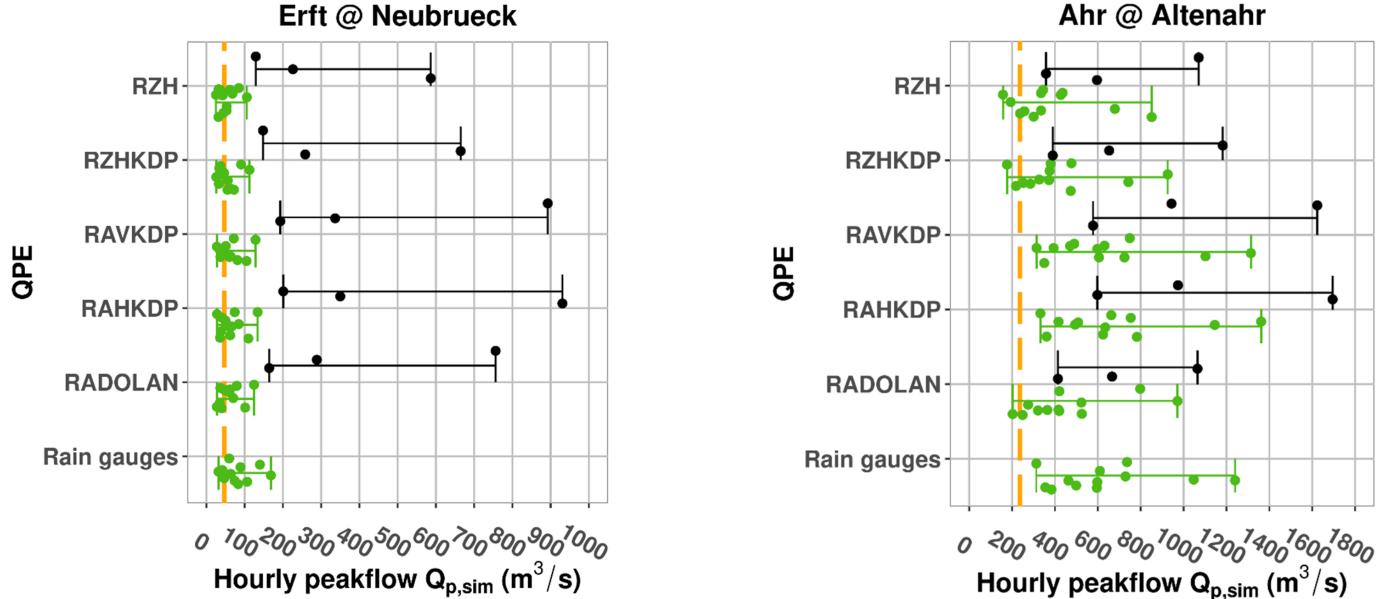
3.2 | Result 3: Uncertainties from model parameters vs. from QPE products



Additional uncertainty from model parameter estimation GR4H simulations bracketed only HMann and MMann

GR4H vs. ParFlowCLM | QPE: RAVKDP 1600 **GR4H** - Median - ParFlowCLM - LMann 1400 Hourly ParFlowCLM - MMann ParFlowCLM - HMann **Q**_{HistPeak} discharge — Q_{LastMes} 1000 -800 **Q**sim -600 (**m**³) -400 S -200 -0 14-07 22:00 16-07 22:00 19-07 10:00 19-07 22:00 15-07 10:00 15-07 22:00 17.07 10:00 17.07 22:00 16-07 10:00 18-07 10:00 18-07 22:00

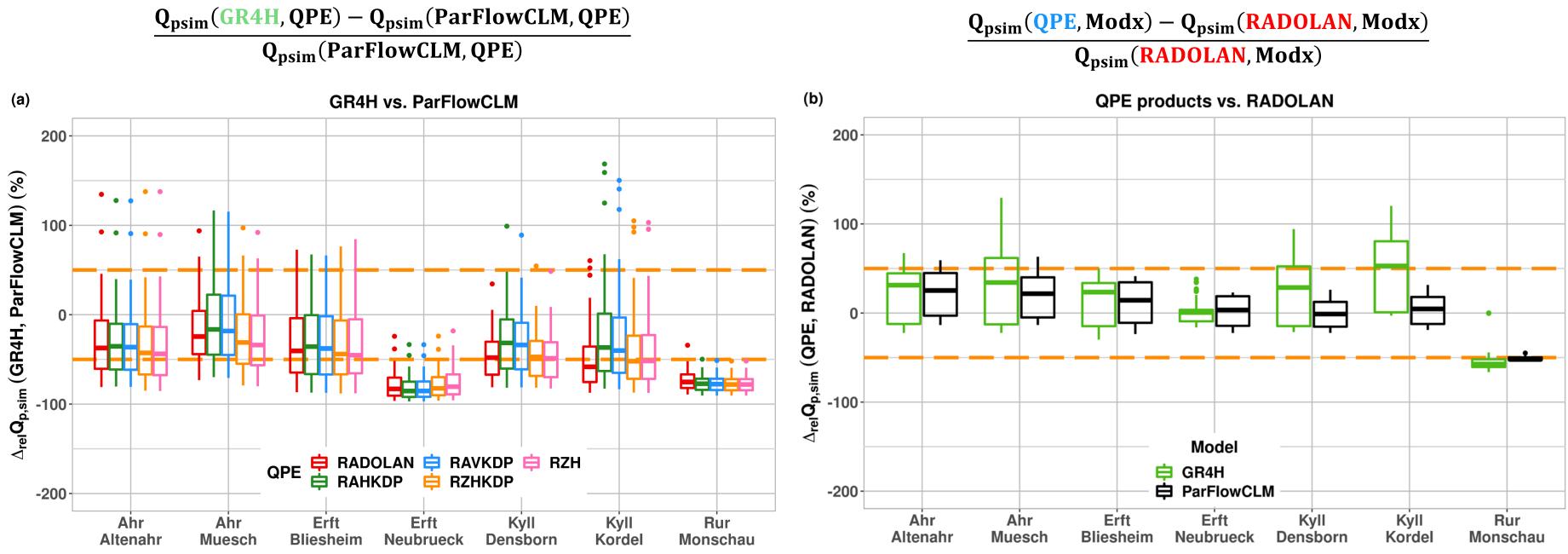
3 Q1. Impact of QPE & modeling choices on peakflow 3.2 | Result 3: Uncertainties from model parameters vs. from QPE products



Model disagreement due to anthropogenic influence ?

Slightly influenced catchment

3.2 | Result 3: Uncertainties from model parameters vs. from QPE products



If we change from **ParFlowCLM** to **GR4H**, we tend to have lower peakflow estimates

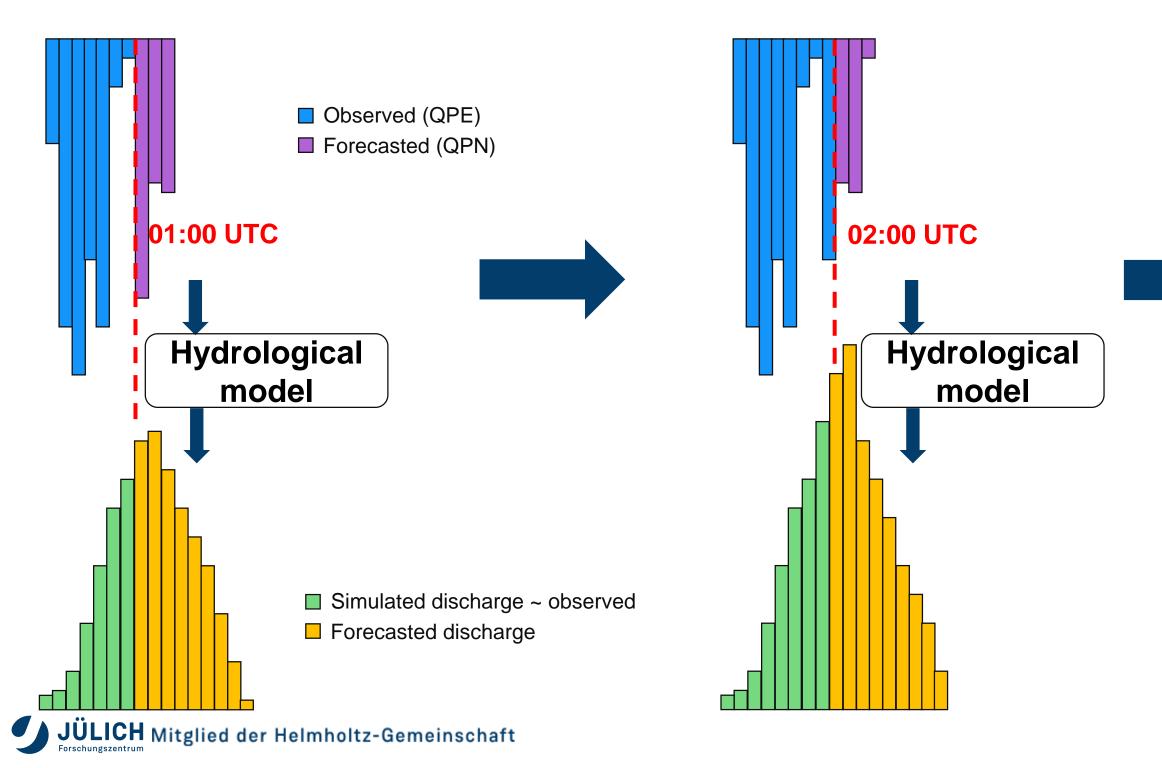
If we change from **RADOLAN** to any other **QPE**, we tend to have higher peakflow estimates

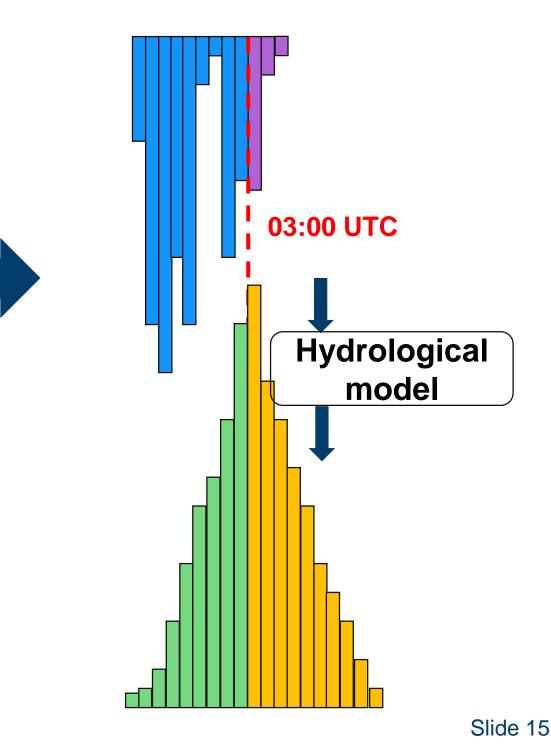
Slide 14

4.1 | QPN methods and framework for hydrological evaluation

Based on the QPE product RAVKDP

2 deterministic: Advection and SPROG (Seed, 2003) + 1 stochastic, with 20 members : STEPS (Bowler et al., 2006)

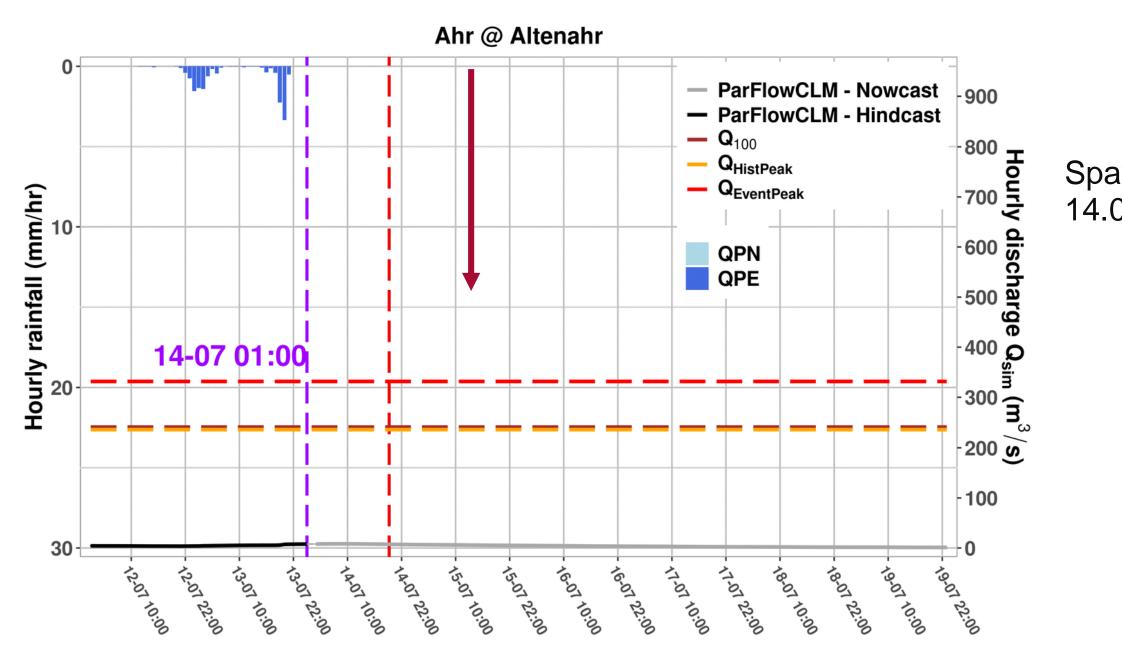




QPN methods and framework for hydrological evaluation 4.1

Based on the QPE product RAVKDP

2 deterministic: Advection and SPROG (Seed, 2003) + 1 stochastic, with 20 members : STEPS (Bowler et al., 2006)



JÜLICH Mitglied der Helmholtz-Gemeinschaft

Spawned each hour between 01h00 and 18h00 of 14.07.2021

QPN methods and framework for hydrological evaluation

Based on the QPE product RAVKDP

2 deterministic: Advection and SPROG (Seed, 2003) + 1 stochastic, with 20 members : STEPS (Bowler et al., 2006)

Evaluation: construct a virtual forecasted hydrograph for each lead time

Time	Q, LT = 1h		Q, LT = 2h	Q,
01h00	Q(1h00) spawned	l at 00h00	Q(1h00) spawned at 23h00 j-1	Q
02h00	Q(2h00) spawned	l at 01h00	Q(2h00) spawned at 00h00	Q
03h00	Q(3h00) spawned	l at 02h00	Q(3h00) spawned at 01h00	Q
04h00	Q(4h00) spawned	l at 03h00	Q(4h00) spawned at 02h00	Q
05h00	Q(5h00) spawned	l at 04h00	Q(5h00) spawned at 03h00	Q
06h00	Q(6h00) spawned	l at 05h00	Q(6h00) spawned at 04h00	Q

Virtual because assembled out of different hydrographs

1, LT = 4h

(1h00) spawned at 21h00 j-1

(2h00) spawned at 22h00 j-1

(3h00) spawned at 23h00 j-1

(4h00) spawned at 00h00

(5h00) spawned at 01h00

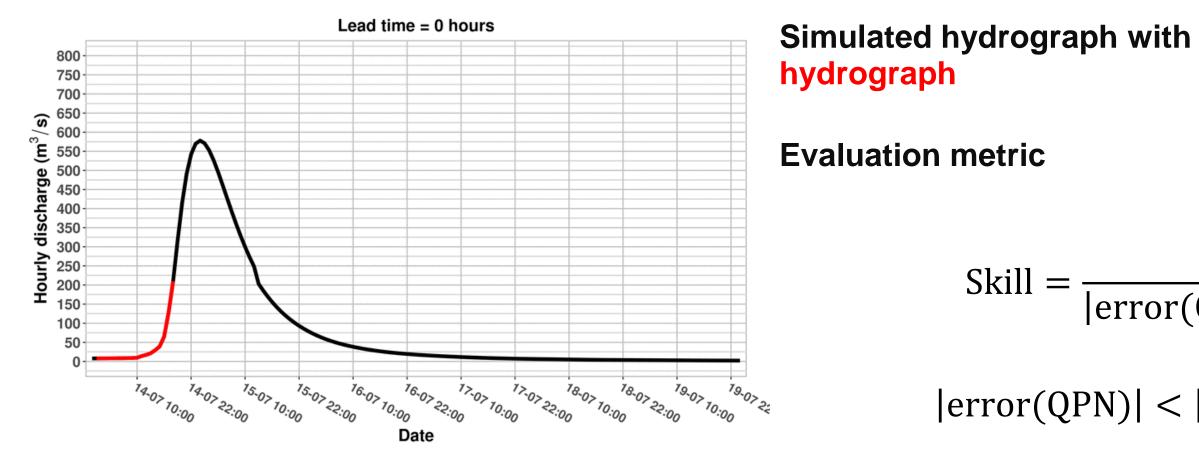
(6h00) spawned at 02h00

QPN methods and framework for hydrological evaluation

Based on the QPE product RAVKDP

2 deterministic: Advection and SPROG (Seed, 2003) + 1 stochastic, with 20 members : STEPS (Bowler et al., 2006)

Evaluation: construct a virtual forecasted hydrograph for each lead time



Chen et al. (2017); Hersbach (2000)

JÜLICH Mitglied der Helmholtz-Gemeinschaft

- Simulated hydrograph with QPE to be compared with forecasted

- $Skill = \frac{|error(Bench)|}{|error(QPN)| + |error(Bench)|}$
- $|error(QPN)| < |error(Bench)| \Rightarrow Skill > 0.5$
- Error estimated using the continuous rank probability score (CRPS)

4.2 | Result 1: Hydrological persistence as benchmark

No differences between the three methods

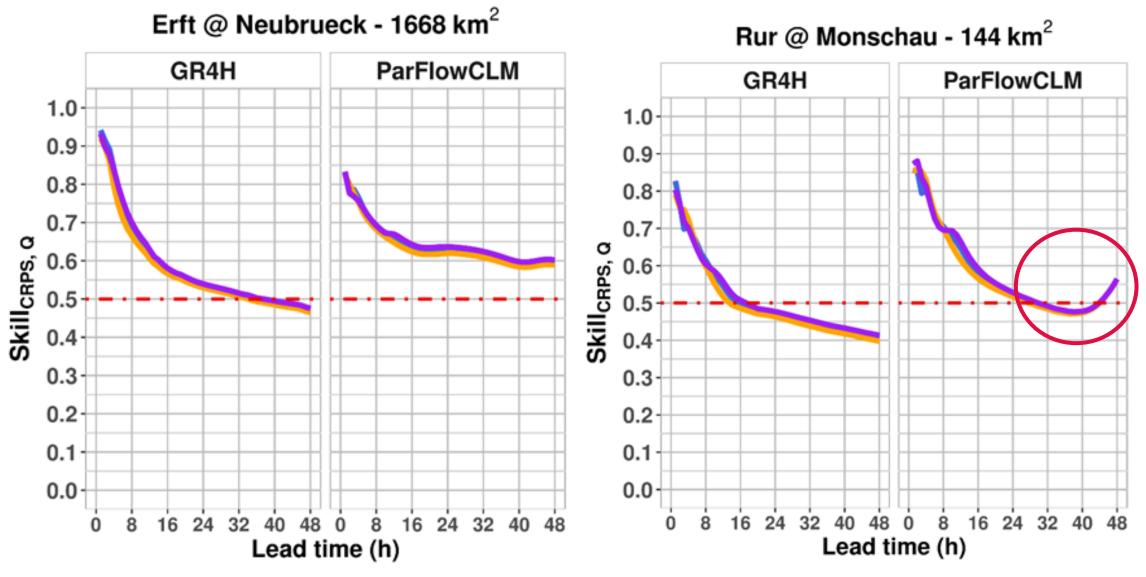
Decreasing skill with increasing lead time

A rebound in the skill curves for the Ahr river. related to rising/falling limbs of the hydrograph

Usefulness that can last as long as 48 h, except for some cases

No significant relation with catchment size

No significant effect of the hydrological model

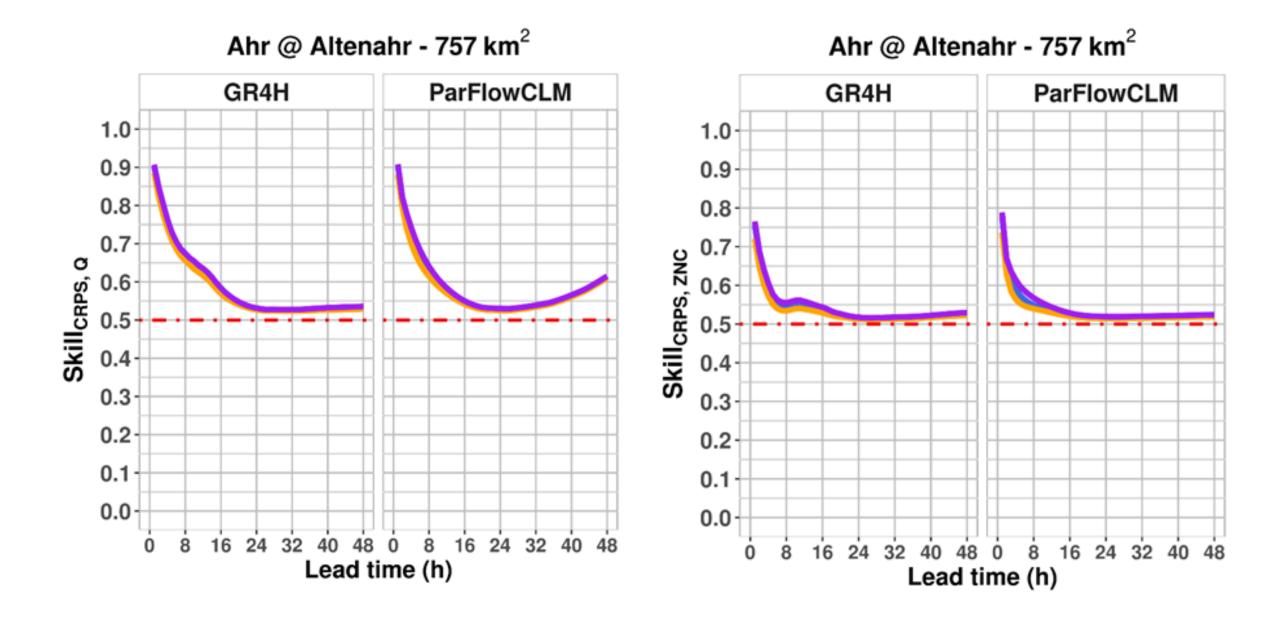


QPN method – Advection – SPROG – STEPS

4.2 | Result 2: Zero-precipitation nowcasts as a benchmark

Similar conclusions, but no rebound effect!!

Lower skill compared to hydrological persistence, but more costly with additional model run



QPN method - Advection - SPROG - STEPS

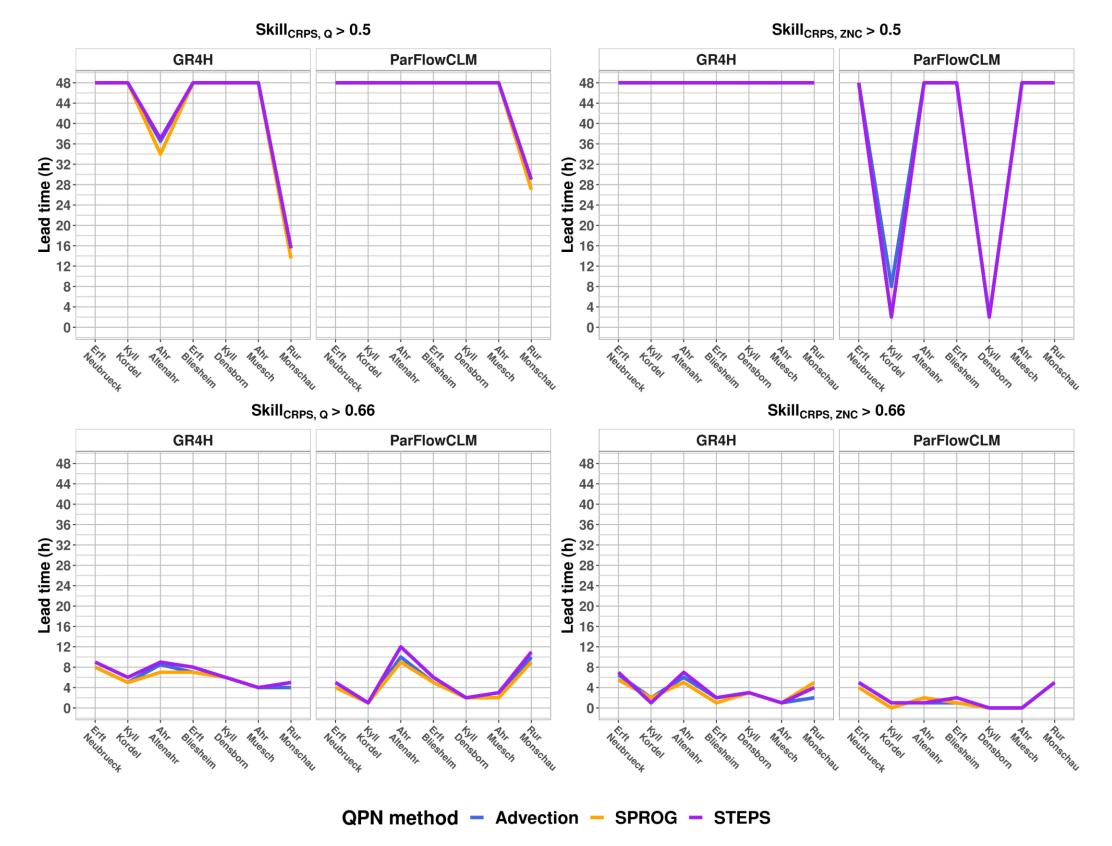
4.2 | Result 3: Effect of skill threshold

 $|error(QPN)| < |error(Bench)| \Rightarrow Skill > 0.5$

$$|\operatorname{error}(\operatorname{QPN})| < \frac{1}{2} |\operatorname{error}(\operatorname{Bench})| \Rightarrow \operatorname{Skill} > \frac{2}{3}$$

Changing the skill threshold has a significant impact!

QPN are now useful only up to 12 h at most!



JÜLICH Mitglied der Helmholtz-Gemeinschaft

Slide 21

5 Conclusions

Comparison of modeling philosophies

There is general agreement between GR4H and ParFlowCLM, except for highly influenced catchments. Adopting a very low Manning's explains most of the discrepancies between the models

At this stage, running a conceptual model seems more advantageous, but the distributed model allows for estimations in all points of the domain, regardless of discharge data availability

Evaluation of QPE products

Including specific attenuation helped improve the radar-based QPE products

The choice of QPE products impacted the ability of models to anticipate a record-breaking flood

Added value of QPN methods

The QPN methods behaved similarly. Possible differences in a less predictable, more spatially variable precipitation event? The choice of the benchmark model and the skill threshold impacts the evaluation of the QPN

Thank you for your attention! **Questions?**

References

Saadi, M., Furusho-Percot, C., Belleflamme, A., Chen, J.-Y., Trömel, S., and Kollet, S., in review, 2022. How uncertain are precipitation and peakflow estimates for the July 2021 flooding event? Nat. Hazards Earth Syst. Sci. Discuss. [preprint], https://doi.org/10.5194/nhess-2022-111

Saadi, M., Furusho-Percot, C., Belleflamme, A., Reinoso-Rondinel, R., Trömel, S., and Kollet, S., in prep., 2022. Hydrological evaluation of three radar-based nowcasting techniques for the extreme July 2021 event in Germany.

Bowler, N.E., Pierce, C.E., Seed, A.W., 2006. STEPS: A probabilistic precipitation forecasting scheme which merges an extrapolation nowcast with downscaled NWP. Quarterly Journal of the Royal Meteorological Society 132, 2127–2155. https://doi.org/10.1256/gj.04.100 Chen, C., Twycross, J., Garibaldi, J.M., 2017. A new accuracy measure based on bounded relative error for time series forecasting. PLOS ONE 12, e0174202. https://doi.org/10.1371/journal.pone.0174202 Chen, J.-Y., Trömel, S., Ryzhkov, A., Simmer, C., 2021. Assessing the Benefits of Specific Attenuation for Quantitative Precipitation Estimation with a C-Band Radar Network. Journal of Hydrometeorology 22, 2617–2631. https://doi.org/10.1175/JHM-D-20-0299.1 Ficchì, A., Perrin, C., Andréassian, V., 2019. Hydrological modelling at multiple sub-daily time steps: Model improvement via flux-matching. Journal of Hydrology 575, 1308–1327. https://doi.org/10.1016/j.jhydrol.2019.05.084 Hersbach, H., 2000. Decomposition of the Continuous Ranked Probability Score for Ensemble Prediction Systems. Weather Forecast. 15, 559-570. https://doi.org/10.1175/1520-0434(2000)015<0559:DOTCRP>2.0.CO;2 Kollet, S.J., Maxwell, R.M., 2006. Integrated surface-groundwater flow modeling: A free-surface overland flow boundary condition in a parallel groundwater flow model. Advances in Water Resources 29, 945–958. https://doi.org/10.1016/j.advwatres.2005.08.006 Seed, A.W., 2003. A Dynamic and Spatial Scaling Approach to Advection Forecasting. Journal of Applied Meteorology and Climatology 42, 381-388. https://doi.org/10.1175/1520-

0450(2003)042<0381:ADASSA>2.0.CO;2

