RealPEP Meeting, Berlin, 9 October 2024

P1: Status on the QPE-products for RealPEP:

Polarimetric VPR for ML correction

Raquel Evaristo, University of Bonn Ju-Yu Chen Alexander Ryzhkov Silke Trömel

Work packages

WP-P1-1: Joint evaluation, data provision and operationalization

- Evaluate methods and estimators on a large dataset
- \checkmark Synchronise evaluation with other projects
- Identify remaining deficiencies –
- Perform evaluation with a semi-operational system in POLARA

WP-P1-2: Polarimetric QPE refinement by α segmentation

- ✓ Identify hail cores and segments with PHIDP bumps
- Apply the ZPHI method to rainy segments
- \checkmark Derive segment-wise α estimates
- ✓ Estimate uncertainties

WP-P1-3: Polarimetric QPE in snow and mixed-phase regions

- Apply polarimetric VPR (PVPR) in heterogeneous rain
- ✓ Improve retrievals for snowfall intensity

WP-P1-4: Probabilistic merging at increasing resolutions

- $\checkmark\,$ Error estimation and bias correction between QPE products
- ✓ Formulate a Bayesian merging framework
- ✓ Use estimated uncertainty to derive ensemble QPE

🗸 Ju-yu Chen: done

 \checkmark In this presentation

The problem

Radar Scan Strategy - (6.966944, 51.405556, 185.0) 10 25.0° $H_{FL} = 1.0 \text{ km}, \text{ EI} = 0.5 \text{ deg}$ 9.5 17.0° 9 40 12.0° 8.5 8.0° 8 ρ_{hv} 7.5 5.5° Z (dBZ), 10*Z_{DR} (dB), 40* ρ_{hv} 30 7 4.5° 6.5 3.5° Altitude (km) 2.2 4.2 4.2 4 2.5° Ζ 1.5° 20 0.5° 3.5 3 10 2.5 \mathbf{Z}_{DR} 2 1.5 ML 0 1 Center 50 150 0.5 0 100 200 ---- 3 dB Range (km) 0 20 60 80 100 120 140 160 180 0 40 Range (km) Low Melting layer

Vertical cross- section DWD radar scan

Radial profile of Z_H , Z_{DR} and ρ_{HV}

The problem

m

Composite Daily Rainfall over Germany

RADOLAN RY Cumulative 2018-01-15T23:55:00

54 70.79 - 50.00 53 - 25.12 52 - 12.59 51 6.31 50 - 3.16 49 - 1.58 48 0.00 47 10 12 14

- Circles surrounding radar stations
- Lowest radar beam intercepting the ML (lower than 1 km)
- Beam overshooting the ML sampling snow results in underestimation of precipitation amount at the surface

PVPR: Polarimetric Vertical Profile Reflectivity

Idealized vertical profile of $Z_{\rm H}$ and $\rho_{\rm HV}$

Radial profiles of Z bias and ρ_{hv} are correlated. Deeper minimum of ρ_{hv} corresponds to higher Z bias and one can quantify the Z bias using radial profile of ρ_{hv} .

 H_{b} = Height of ML bottom ΔH = ML thickness

- 1) Establish correlations between ΔZ and $~\rho_{\text{HV}}$ from statistical analysis of QVP
 - Originally the method was developped by A. Ryzhkov for the USA
 - Adapted to C-band and German climatology using 5 years (2015-2020) with the Prötzel radar Julian Giles. Uni Bonn

- 1) Establish correlations between ΔZ and $\,\rho_{\text{HV}}$ from statistical analysis of QVP
- 2) Generate several radial profiles of Z_H and ρ_{HV} for a typical stratiform cloud at low antenna elevations typically used in QPE
 - For a multitude of ML heights and ML thicknesses
 - Store in lookuptables

- 1) Establish correlations between ΔZ and $~\rho_{\mbox{\tiny HV}}$ from statistical analysis of QVP
- 2) Generate several radial profiles of Z_H and ρ_{HV} for a typical stratiform cloud at low antenna elevations typically used in QPE
- 3) Characterize observed radial profiles through
 - $\rho_{\mbox{\tiny HV}}$ dip in the ML and
 - the height of the ML bottom

- 1) Establish correlations between ΔZ and $~\rho_{\text{HV}}$ from statistical analysis of ~QVP
- 2) Generate several radial profiles of Z_H and ρ_{HV} for a typical stratiform cloud at low antenna elevations typically used in QPE
- 3) Characterize observed radial profiles through
 - ρ_{HV} dip in the ML and
 - the height of the ML bottom
- 4) Find in the lookuptables the modeled profile that best fits the observation and use it to retrieve the intrinsic Z_H profile at the surface

- 1) Establish correlations between ΔZ and $~\rho_{\text{HV}}$ from statistical analysis of ~QVP
- 2) Generate several radial profiles of Z_H and ρ_{HV} for a typical stratiform cloud at low antenna elevations typically used in QPE
- 3) Characterize observed radial profiles through
 - ρ_{HV} dip in the ML and
 - the height of the ML bottom
- 4) Find in the lookuptables the modeled profile that best fits the observation and use it to retrieve the intrinsic Z_H profile at the surface
- 5) Use the corrected Z_H profile to calculate rain rates

The Lookuptables

The Lookuptables

Default PVPR profile correction

 $EI = 1.0^{\circ}$

Application of PVPR Method

W-E (km)

Rainfall 24h accumulation

	Default	Runs
Max ΔH (km)	0.55	0.65
ß (dB/km)	4	3.5
		5
Zmax (dBZ)	30	28
Multiplicative factor to α within the ML	2.0	2.5
		3
		4
Decreasing slope after the ML peak	1.25	1.5
		1.75

- Differences are mostly small
- Observed impact for changing
 - β at far ranges
 - Decreasing slope after the ML

 $EI = 1.0^{\circ}$, Hb = 1.6 km, $\Delta H = 0.45$ km

Rainfall 24h accumulation

Validation Metrics

Event Variability

PVPR in Heterogeneous Rain

Prötzel radar 20180923

Page 82

PVPR in Heterogeneous Rain

Essen radar 20180923

UMD 20180923

Default

Original PVPR

UMD 20180923

Original PVPR

Identifying Convective regions

1520 UTC UMD 20180923

Powell, S. W., R. A. Houze, , and S. R. Brodzik, 2016: Rainfall-Type Categorization of Radar Echoes Using Polar Coordinate Reflectivity Data. J. Atmos. Oceanic Technol., 33, 523–538, https://doi.org/10.1175/JTECH-D-15-0135.1.

Convective Rainfall Calculation

Zeng, Z., Wang, D., Chen,Y., 2021: "An investigation of convective features and Z-R relationships for a local extreme precipitation event". *Atmospheric Research*,Vol. 250. https://doi.org/10.1016/j.atmosres.2020.105372

UMD 20180923

Original PVPR

-50

ò

W-E (km)

50 100

- 27

24

- 21

18

15

12

150

UMD 20180923

Dec. slope= 1.75 + Convection

UMD 20180923

Dec. slope= 1.75 + Convection

UMD 20180923

Summary

- PVPR technique shows clear improvements in QPE
 - Removing the effect of the ML
 - Improving the rainfall at far ranges
- Tests with parameters show that most impact comes from $\boldsymbol{\beta}$ and the decreasing slope of the dzcor
- Case by case adjustment of parameters for the best performance
- Including convection identification and a convective rainfall R-Z relation improves QPE estimation for this special case
- Parameters were tested independently from each other
 - Potential combinations to be tested in the future

