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Commercial Microwave Links
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Rainfall estimation in Germany

Source: C. Ruf, KIT Source: DWDSource: DWD

Rain Gauge Weather radarCommercial microwave link (CML)



Topics

● RealPEP P1 Roadmap

● Updates from the CML data acquisition at DWD

● Collection of rainfall data for upcoming studies

● Deep learning based correction of radar QPE

● High resolution rainfall maps for West Africa
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Advection correction: The concept

Intermediate timesteps by constant flow
(morphed QPE)

Advection correction by temporal aggregation

Estimated optical flow by Lucas-Kanade method (from PySTEPS)
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Advection correction: 1 minute radar along CML
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Source: DWD

Error sources of radar QPE
(according to Villarini and Krajewski 2010)
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Source: DWD

Error sources of radar QPE
(according to Villarini and Krajewski 2010)

Miscalibration (Partial) beam blockage

Ground clutter / Anomalous 
Propagation Attenuation

Range degradation Choice of Z-R /
DSD variability

Vertical variability

Air motion / Drift

Temporal sampling error

classical 
correction 
schemes

Polarimetry
Merging 

with ground 
sensors

“Spatio-temporal mismatch”
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Advection correction: 1 minute radar along CML



Spatio-temporal mismatch
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Source: DWD

Source: C. Ruf, KIT
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Current +1 Step

Simple merging of 
pol. Radar and CML

Correction of sampling 
error for 5 min radar data

Large scale comparison of 
1 min data

→years for R(Z) 
→months for R(A, K

DP
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Probabilistic Radar QPE 
using error with respect to 

CML and Gauge
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Gauges

+2 Step

Quantification and 
correction of spatio 
temporal mismatch 

Now, really and if necessary using R(Z) products first



CML DAQ @ DWD
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CML DAQ @ DWD

Fact:
● “operational” real-time data acquisition with a 2 min latency

● >5000 unique paths

● 10s temporal resolution → reduction of uncertainty due to instantaneous sampling

● Hourly R(CML) and R(Z)+R(CML) product using RADOLAN adjustment at 5 min latency

Fiction:
● Potential water vapor estimation at E-band (maybe no E-band, maybe incorrect metadata)



Current data collection at KIT
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Current data collection at KIT

Source: DWD
Source: C. Ruf, KITSource: DWD

● RADOLAN-RY
○ 2001 until today
○ R(Z)
○ 5 min resolution

● RADOLAN-RW
○ 2001 until today
○ R(Z) gauge adjusted
○ 1H resolution

● RADKLIM-YW
○ 2006 until today
○ R(Z) gauge and clim adjusted
○ 5 min resolution

● CML 2017 until today
○ 3900 sensors
○ 1 min resolution

● CML 2023 until today
○ >5000 sensors
○ 10 s resolution

● Automatic
○ from 2007
○ ~1000 rain gauges
○ 1 min resolution

● Manual
○ from 1900 to today
○ ~1000 (year >2010)
○ daily resolution



Deep learning based correction of radar QPE
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Spatio-temporal mismatch
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Source: DWD

Source: C. Ruf, KIT

Source: DWD
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Neural network approach to 
gauge adjusted radar 

super-resolution

Deterministic QPE



ResRadNet
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Input

Output
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ResRadNet



Proof: High potential to reduce overall error including sampling error

ResRadNet



Low hanging fruit: Test deep learning based polarimetric retrieval

1 year of training data enough 
→ Test with 3 months used in RealPEP 
→ Repeat using polarimetric QPE (post-processing)
→ Repeat using polarimetric observables (full retrieval)

Why? → The full processing pipeline exists and only the input changes. Very low effort!
Why not? → 



High resolution rainfall maps for West Africa
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High resolution rainfall maps for West Africa
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Ouagadougou, Burkina Faso

Only one available 
rain gauge with 
daily resolution

Dense CML 
network



High resolution rainfall maps for West Africa
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Thank you!

Questions?
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