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A hydrological model can be:
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Better process representation
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Hrachowitz & Clark (2017)



1| Context and objectives

Slide 4

Hydrological 

model

Precipitation

Simulated discharge

Errors in model 

outputs

Observed discharge

Precipitation 

estimates are 

biased

Hydrological models are valuable tools to validate the 

precipitation estimates

July 2021 events at Altenahr and Erftstadt-Blessem

(source: DW.com)

For flash flood cases (convective summer events), 

reliable precipitation estimates are crucial

Challenge: instruments are generally 

destroyed, no discharge measurements for 

validation!



1| Context and objectives

Slide 5

July 2021 events at Altenahr and Erftstadt-Blessem

(source: DW.com)

Q1. What were the chances of exceeding the 

highest measured peakflow, given different 

precipitation estimates (QPE) and 

hydrological models?

Q2. How do compare different methods of 

precipitation nowcasting in improving the 

lead time?
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Area (km2) 140 – 1670

Mean precipitation (mm/yr) 700 – 1070

Aridity index (-) 0.52 – 0.89

Mean discharge (mm/yr) 130 – 760

2.1 | Catchments

7 catchments draining the Eifel range
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2.2 | Models

PDE-based, 3D distributed model, hourlyConceptual, lumped, hourly

GR4H (Ficchì et al. 2019) ParFlow-CLM (Kollet & Maxwell, 2006, 2008)
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2.3 | Data

GR4H (Ficchì et al. 2019) ParFlow-CLM (Kollet & Maxwell, 2006, 2008)

Catchment-averaged inputs
- Precipitation (RADOLAN)
- 2-m air temperature (ERA5-LAND)

Catchment-averaged parameters
- 4 parameters, calibrated using discharge 

data (LANUV-NRW, LfU-RLP), 2007-2021
- Calibration needs definition of objective 

function and period of calibration → 12 
optimal parameter sets for each 
catchment

Cell-averaged inputs (for 2000x2000x15 cells over Central Europe, 
611m resolution)

- Precipitation (RADOLAN & ERA5-LAND)
- 2-m air temperature (ERA5-LAND)
- Surface pressure (ERA5-LAND)
- 10-m u and v wind components(ERA5-LAND)
- Surface solar/thermal radiation downwards 
(ERA5-LAND)

Cell-averaged parameters
- Topography: ASTER+MERIT DEMs
- Land cover: CLC2018, reclassed in 18 IGBP types
- Soil types: SoilGrids250m, grouped into 12 USDA classes 

and IHME
- Manning’s n = 5.5∙10-5 h∙m-1/3

- Only 1 parametrization for the whole domain

Runs on local computer Runs on GPUs of the JUWELS HPC system 
(4 nodes x 512 GiB)



3| Q1. Impact of QPE & modeling choices on peakflow

Slide 9

3.1 | QPE products for the 14.07.2021

Name Parameters Source Run with

Rain Gauges - DWD Only GR4H

RADOLAN Reflectivity, gauge-adjusted DWD

GR4H and 

ParFlowCLM

RZ Horizontal reflectivity R(Zh)

Chen et al. (2021)

RKDP
Horizontal reflectivity + specific differential 

phase R(Zh)/R(KDP)

RAHKDP

Specific attenuation of horizontally polarized 

radar waves + specific differential phase 

R(Ah)/R(KDP)

RAVKDP

Specific attenuation of vertically polarized 

radar waves + specific differential phase 

R(AV)/R(KDP)

Chen et al. (2021)
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3.2 | Result 1: Differences between QPE products

Similar spatial pattern

Higher rainfall rates for RAHKDP and RAVKDP
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3.2 | Result 1: Differences between QPE products

Similar spatial pattern

Higher rainfall rates for RAHKDP and RAVKDP

For most catchments, RAHKDP and RAVKDP gave similar 
results to rain gauges, compared to the other QPEs
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3.2 | Result 2: Differences between hydrological models

Similar model simulations for 4/7 catchments
Effect of QPE is more pronounced on peakflows
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3.2 | Result 2: Differences between hydrological models

If we change from ParFlow-CLM to GR4H, the median relative 
errors are limited (except for Erft @ Neubrueck and Rur @ 

Monschau)
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3.2 | Result 2: Differences between hydrological models

If we change from ParFlow-CLM to GR4H, the median relative 
errors are limited (except for Erft @ Neubrueck and Rur @ 

Monschau)

If we change from Radolan to another QPE, the relative errors 
are more important, especially for GR4H



3| Q1. Impact of QPE & modeling choices on peakflow

Slide 15

3.2 | Result 3: Chances of breaking the historical records of peakflow

The effect depends on the catchment:

1. Very high chances no matter what QPE product is used
2. Very low chances for the Rur @ Monschau
3. High dependency on QPE for the remaining catchments

Catchment Historical peakflow (m3/s)

Ahr @ Altenahr 236

Ahr @ Muesch 132

Erft @ Bliesheim 55.8

Erft @ Neubrueck 46.64

Kyll @ Densborn 180

Kyll @ Kordel 218

Rur @ Monschau 109.63
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3.1 | QPN methods

Based on the QPE product RAVKDP

2 deterministic: Advection and Sprog (Seed, 2003) + 1 stochastic, with 20 members : STEPS (Bowler et al., 2006)

01:00 UTC 02:00 UTC 03:00 UTC

Observed (QPE)

Forecasted (QPN)

Simulated discharge ~ observed

Forecasted discharge

Hydrological 

model

Hydrological 

model

Hydrological 

model
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3.1 | QPN methods

Based on the QPE product RAVKDP

2 deterministic: Advection and Sprog (Seed, 2003) + 1 stochastic, with 20 members : STEPS (Bowler et al., 2006)

Spawned each hour between 01h00 and 18h00 of 
14.07.2021
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3.1 | QPN methods

Based on the QPE product RAVKDP

2 deterministic: Advection and Sprog (Seed, 2003) + 1 stochastic, with 20 members : STEPS (Bowler et al., 2006)

Evaluation: construct a virtual forecasted hydrograph for each lead time

Time Q, LT = 1h Q, LT = 2h Q, LT = 4h

01h00 Q(1h00) spawned at 00h00 Q(1h00) spawned at 23h00 j-1 Q(1h00) spawned at 21h00 j-1

02h00 Q(2h00) spawned at 01h00 Q(2h00) spawned at 00h00 Q(2h00) spawned at 22h00 j-1

03h00 Q(3h00) spawned at 02h00 Q(3h00) spawned at 01h00 Q(3h00) spawned at 23h00 j-1

04h00 Q(4h00) spawned at 03h00 Q(4h00) spawned at 02h00 Q(4h00) spawned at 00h00

05h00 Q(5h00) spawned at 04h00 Q(5h00) spawned at 03h00 Q(5h00) spawned at 01h00

06h00 Q(6h00) spawned at 05h00 Q(6h00) spawned at 04h00 Q(6h00) spawned at 02h00

Virtual because assembled out of different hydrographs
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4.1 | QPN methods

Based on the QPE product RAVKDP

2 deterministic: Advection and Sprog (Seed, 2003) + 1 stochastic, with 20 members : STEPS (Bowler et al., 2006)

Evaluation: construct a virtual forecasted hydrograph for each lead time

Simulated hydrograph with QPE to be compared with forecasted 
hydrograph

Evaluation metrics

NSE(LT) = 1 −
σh QQPE − QQPN,LT

2

σh QQPE − QQPE
2

KGE(LT) = 1 − 1 − r 2 + 1 −
QQPN,LT

QQPE

2

+ 1 −
σQPN,LT

σQPE

2

Perfect score = 1

Perfect score = 1

Perfect score = 1rHQ(LT) =
max(QQPN,LT)

max(QQPE)

Nash & Sutcliffe (1970); Gupta et al. (2009)

Acceptable: ≥ 0.9

Acceptable: between 
0.9 and 1.1
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4.2 | Results

GR4H vs. ParFlowCLM: Having an ensemble of parameters can 
help improve the lead time, but it is costly

Forecasting skill drops nonlinearly with increasing lead time

Ahr @ Altenahr (760 km2)
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4.2 | Results

Erft @ Neubrueck (1670 km2)

Better lead times are obtained for larger catchments

GR4H vs. ParFlowCLM: Having an ensemble of parameters can 
help improve the lead time, but it is costly

Forecasting skill drops nonlinearly with increasing lead time
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4.2 | Results

𝐊𝐆𝐄 ≥ 𝟎. 𝟗 𝐍𝐒𝐄 ≥ 𝟎. 𝟗 𝟎. 𝟗 ≤ 𝐫𝐇𝐐 ≤ 𝟏. 𝟏

Better lead times are obtained for larger catchments

GR4H vs. ParFlowCLM: Having an ensemble of parameters can 
help improve the lead time, but it is costly

Forecasting skill drops nonlinearly with increasing lead time

No significant differences between the QPN methods, but an 
ensemble of members helps improve the lead time

Heuvelink et al .(2020)
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Including specific attenuation helped improve the radar-based QPE products 

Evaluation of QPE products

The choice of QPE products impacted the ability of models to anticipate a record-breaking flood 

On average, the different QPN methods behaved similarly

Added value of QPN methods

Increasing the number of members increases (statistically) the chance of having better lead times

There is general agreement between GR4H and ParFlowCLM, except for catchments highly influenced or for which 
ParFlowCLM paramterization should be verified

Comparison of modeling philosophies

At this stage, running a conceptual model seems more advantageous, but inundation mapping will need a spatially-
distributed approach



Thank you for your attention!

Questions?
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