

Assimilation of Soil Moisture Data into an Integrated Terrestrial Model: Validation of Soil Moisture and Real-time Flood Forecasting

Samira Soltani, Stefan Kollet (PI)

RealPEP Meeting, P4

Research questions, Objectives

- Testing the EnKF capabilities in improvement of SWC and realtime flood forecasting.
- Does the performance of data assimilation vary between using different remotely-sensed observations (e.g., Sentinel-1 vs. CCI) in hydrological models?
- Proposing and implementing a novel application of the First Order Reliability Method (FORM) to validate the reliability of the DA performance.

Case study description

- Situated in western Germany, eastern Luxembourg, and southeastern Belgium.
- Flood July 2021 (13-18 July): The flood in Germany led to 180 deaths and extensive damage (EUR 46 billion).

Methodology

Modeling

ParFlow-CLM

- Atmospheric forcing input : ECMWF data
- Soil configuration: 15 layers (up to 50 m)
- Spatial resolution: 0.0055° (~0.611 km)
- Time period of simulation: June-July 2021 Relative saturation Pressure head

Data assimilation

EnKF

- Generating 50 ensembles: error perturbation
- o for precipitation and initial pressure head.
- Pressure head is updated (then it is converted to SWC).

Methodology: The FORM

Methodology: The LSF

 $DAA = \frac{\left| y_{obs}^{t} - \hat{y}^{t} \right|}{\frac{1}{n} \sum_{t=1}^{n} P^{t}} > 0.2$

DA Accuracy (DAA) is between 5% and 20% of corresponding avera ge precipitation.

G(y) = 0.35 < REG(y) = 0.75 > CEG(y) = DDA > 0.2

Time series of SWC; CCI DA

Time series of SWC; CCI DA

Time series of SWC; CCI DA

Findings: CCI DA

- CCI DA proves to be a robust approach for representing soil moisture dynamics (good agreement with GLEAM).
- It shows improvement over ERA5/GLEAM in capturing moisture spikes during rai nfall, such as the significant event in mid-July.
- Open-loop, on the other hand, generally underperforms by under/overestimating SWC levels during rainfall events, indicating a lack of responsiveness to precipit ation input.

SWC, Spatial pattern

- □ GLEAM remains a better reference in this context, off ering a more accurate representation of both spatial he terogeneity and broad-scale trends.
- □ In contrast, ERA5's smoother approach works well for general insights but lacks the precision needed for mor e detailed hydrological assessments.

SWC, RMSE

13

by

Spatially corrolation, SWC

□ The CCI DA shows better spatial correlation.

Weak correlations of open-loop.

□ The Sentinel-1 DA shows improved spatial correlation compared to the Open-loop, but it does not perform as consistently as CCI DA.

Time series of Streamflow

Streamflow: R

DA resulting in slig htly higher R.

SM-DA adjust the Q peak to be closer to the observed val ues.

Probabilistic evaluation: the FORM

				P _f					
	LSF								
	RE > 0.35		CE < 0.75		DD	DDA > 0.2			
	Ref:	Ref:	Ref:	Ref:	Ref:	Ref:			
	GLEAM	ERA5	GLEAM	ERA5	GLEAM	ERAS	5		
Sentinel-1-DA	12 %	15 %	11 %	14 %	7 %	11 %			
CCI-DA	9 %	12 %	10 %	10 %	8 %	9 %			
Open-loop	14 %	17 %	15 %	16 %	12 %	14 %			
	Streamflow								
			$\frac{P_{\rm f}}{\rm LSF}$						
			-	(a)	(b)	(a)	A > 0.2	(a)	(f)
				(a)	(0)	(0)	(u)	(e)	
		Sei	ntinel-I-DA	13 %	10 %	7 %	10 %	9%	/ %
			CCI-DA	15 %	12 %	9 %	12 %	11 %	9 %
		C	Open-loop	17 %	14 %	11 %	14 %	13 %	11 9

- □ Sentinel-1-DA shows the lowest probability of failure across all locations, indicating sup erior performance in reducing failure risk.
- □ CCI-DA, while performing better than the open-loop, shows moderately higher failure p robabilities.
- □ The open-loop exhibits the highest failure probabilities, highlighting the importance of d ata assimilation in improving the model's reliability.

Conclusions

- RMSE for simulated SWC by CCI DA is lower than RMSE of simulated SWC by Sentinel-1 DA.
- Q peak simulated by Sentinel-1 DA has better agreement with observation.
- Time lag in occurrence of Q peak is seen (between 1-3 days).
- □ Updating states + parameters (K and n) can be helpful for improving streamflow predictions. dx=0.611 km and obviously it is bigger than the width of river, which results lower value of pressure head and then

streamflow.

