

Project overview:

CHARACTERIZATION OF OROGRAPHY-INFLUENCED RIMING AND SECONDARY ICE PRODUCTION AND THEIR EFFECTS ON PRECIPITATION RATES USING RADAR POLARIMETRY AND DOPPLER SPECTRA (CORSIPP)

Veronika Ettrichrätz (Post Doc) Anton Kötsche (PhD)

PI: Heike Kalesse-Los, Max Maahn

GENERAL QUESTION

What processes affect snowfall formation and snowfall rates in orographically influenced terrain and what are their external drivers?

Why?:

Research Gap:

>Only sparse observations at remote mountaineous regions

Which processes dominate, what is the impact on precipitation rates, what are external drivers in complex terrain is poorly understood

THE CORSIPP CAMPAIGN (15.11.2022 – 06.06.2023)

94 GHz Dual-Pol W-Band Cloud Radar LIMRAD94

Court: Ben Schmatz

LEIPZIG

Court: Isabelle Steinke

Heike Kalesse-Los (PI), Maximilian Maahn (PI), Veronika Ettrichrätz (Postdoc), Anton Kötsche (PhD Student)

UNIVERSITÄT Institute for Meteorology

Turbulence on site during westerly flow

Turbulence on site in westerly flow

Turbulence on site in westerly flow

Turbulence on site in westerlie flow

- Eddy dissipation rate (EDR) as proxy for turbulence
- rate at which turbulence kinetic energy dissipates in the atmosphere
- Processed by Teresa Vogl from KAZR MDV (Vogl et al., 2022)
- Empirical turbulence threshold of 0.002 m2/s3 exceeded almost all the time
- Two shear layers along the edges of the ALIFD at 500 and 1000m

Main wind direction on site DJF

Institute for Meteorology veronika.ettrichraetz@uni-leipzig.de | anton.koetsche@uni-leipzig.de

UNIVERSITÄT

Helmholtz waves in spectral polarimetry

Institute for Meteorology veronika.ettrichraetz@uni-leipzig.de | anton.koetsche@uni-leipzig.de

Helmholtz waves in spectral polarimetry

2.00

- 1.75

1.50

1.25

+ 0.75

0.50

0.25

0.00

UNIVERSITÄT

LEIPZIG

sZDR slow edge

- Kelvin-Helmholtz waves along the shear layer between blocked valley flow and unblocked flow aloft
- Potentially interesting for SIP processes: Longer residence time, enh. Ice-ice edge collision, stronger riming/aggregation - 1.00 00

Dy EIIIDEUISUL - OWILWOLK, CC DT-3A 4.0, https://commons.wikimedia.org/w/index.php?curid=105303125

Helmholtz waves in spectral polarimetry

PRECIP RATES AND SPECTRAL ZDR (sZDR) AND KDP

Institute for Meteorology veronika.ettrichraetz@uni-leipzig.de | anton.koetsche@uni-leipzig.de

UNIVERSITÄT

Institute for Meteorology veronika.ettrichraetz@uni-leipzig.de | anton.koetsche@uni-leipzig.de

UNIVERSITÄT

Institute for Meteorology veronika.ettrichraetz@uni-leipzig.de | anton.koetsche@uni-leipzig.de

UNIVERSITÄT

WHICH PARTICLESIZES ARE RELATED TO KDP SIGNATURES?

D32 (mm)

- LIMRAD94 KDP spatially averaged (median) between 100 and 500 m AGL (52 range gates)
- LIMRAD94 KDP temporally averaged (median) to fit the VISSS time resolution of one minute.
- Colors are mass weighted mean diameter (D32) = proxy for the mean mass-weighted diameter of the particle population

Mapping of W-Band Beam and X-Band Beam during the RHI scans of the X-Band

UNIVERSITÄT

LEIPZIG

KDP of both radars scales well when corrected for wavelength and elevation angle

Ratio of X-Band ZE and KDP to estimate size of particles producing KDP

X-band KDP/ZE ratio vs W-band KDP

UNIVERSITÄT

LEIPZIG

Simulation by Alexander Myagkov

Suggests that particles below 1mm size are responsible for high KDP

Ratio of X-Band ZE and KDP to estimate size of particles producing KDP

X-band KDP/ZE ratio vs W-band KDP

Simulation by Alexander Myagkov

Paper in progress

Animated evolution of W-Band KDP fallstreaks in X-Band RHI Scans On Dec 6th 2022

UNIVERSITÄT LEIPZIG

Institute for Meteorology

veronika.ettrichraetz@uni-leipzig.de | anton.koetsche@uni-leipzig.de

Instruments | CORSIPP Precipitation, secondary ice production and riming in orographic terrain

VIDEO IN SITU SNOWFALL SENSOR (VISSS)

(Maahn et al., 2023)

- **Camera:** Camera: **Follower Leader** SONIC LED backlight **LED** backlight Court: Ben Schmatz
- Two camera systems
- Size, Number, Shape, Complexity
- Framerate: 250 Hz
- Measurement volume: approx. 8 x 8 x 6 cm
- Minimum detection size: 200 µm

UNIVERSITÄT Institute for Meteorology LEIPZIG

veronika.ettrichraetz@uni-leipzig.de | anton.koetsche@uni-leipzig.de

0

Ш

WORKING ON A SHAPE ALGORITHM – WHAT PARAMETERS TO USE?

- 152 variable vectors as input -
 - Dfit, Dmax, Droi, angle, area, aspectRatio, blur, <u>contourFFT</u>, <u>contourFFTstd</u>, **contourFFTsum**, perimeter, perimeterEroded, pixKurtosis, pixSkew, complexity, dequiv, sorted_fq, amp_rat, amp_rat_sort, distance, Area_via_Dmax, Perimeter_via_Dmax, area_method_diff, perimeter_method_diff, amp rat max value, amp rat max index, contourFFT max value, contourFFT max index
 - Maximum and difference of the 2 cameras
 - Three different fits for some parameters
 - For the first 16 wavenumbers:
 - ContourFFT, sorted fq
 - amp_rat, amp_rat_sort

(Maahn et al., 2023)

CALCULATION OF "CONTOUR" VARIABLES

- 1. Transformation from cartesian to radial representation
- 2. Computing the fouriertransformation of the Theta-Radius-Funktion (FFT)

S.J. Moss, D.W. Johnson / Atmospheric Research 34 (1994) 1-25

UNIVERSITÄT LEIPZIG

Institute for Meteorology

veronika.ettrichraetz@uni-leipzig.de | anton.koetsche@uni-leipzig.de

Methode | Data preperation

CONTOUR VARIABLES

- contourFFT: Amplitude at 1-16 wave numbers
- contourFFTstd: Standard Deviation of amplitudes (1-16 wave numbers)
- contourFFTsum: Sum of amplitudes (1-16 wave numbers)
- amp_rat = Amp_n/ Amp_1
- amp_rat_max_value, amp_rat_max_index
- contourFFT_max_value, contourFFT_max_index

Institute for Meteorology

veronika.ettrichraetz@uni-leipzig.de | anton.koetsche@uni-leipzig.de

Methode Data preparation - how to classify ice particles?

HOW TO CLASSIFY ICE PARTICLES?

LEIPZIG

https://www.its.caltech.edu/~atomic/snowcrystals/class/class-old.htm by Libbrecht

UNIVERSITÄT Institute for Meteorology veronika.ettrichraetz@uni-leipzig.de | anton.koetsche@uni-leipzig.de **Methode** Data preparation - how to classify ice particles?

ICE/SNOW CRYSTAL MORPHOLOGY DIAGRAMS

by Nakaya and Sekido 1936, Magono and Lee 1966, Pruppacher and Klett 1997, Bailey and Hallett 2009, and Libbrecht 2012

LEIPZIG

Description of crystal habits as a function of temperature and water vapour supersaturation with respect to ice

https://snowcrystals.com/ by Libbrecht

Nakaya Diagram

Methode | Data preperation - how to classify ice particles?

ICE PARTICLE CLASSES

- Stellars -
- Needles/ Columns _
- Plates _
- Ufos _

- Aggregates -
- Graupel _
- **Sphericals** _
- Too small
- For each class 200 particles -

Methode | Data preperation - how to classify ice particles?

WHAT KIND OF PARTICLE SHAPE IS THIS?

Aggregates, Dendrites, or already Graupel?

42

Institute for Meteorology

UNIVERSITÄT

LEIPZIG

veronika.ettrichraetz@uni-leipzig.de|anton.koetsche@uni-leipzig.de

Methode Data preparation - how to classify ice particles?

POTENTIAL CLASSIFICATION PROBLEMS

- Stellars _
- **Needles/** Columns
- Plates
- Ufos

LEIPZIG

- Aggregates
- Graupel -
- **Sphericals**
- Too small
 - For each class 200 particles, too few particles, too perfect ones ...

Dmax < 5 px (0.29 mm)

Unclassified: probability <=50 % for one shape -

Methode | Data preperation

HOW TO CLASSIFY ICE PARTICLES?

Confusion matrix for small and large particles, HistGradientBoostingClassifier

UNIVERSITÄT LEIPZIG %

Counts in

Methode Data preperation

HOW MUCH IS A PARTICLE RIMED?

- In-situ method:
- Riming changes shape to more spherical particles
- Complexity χ : Perimeter/(2 $\sqrt{(\pi^* \text{Area})}$) Gergely et al. (2017)
- Sphere: $\chi = 1$

LEIPZIG

- Not size independent, larger particles have larger χ
- Relation between χ , M and size by Maherndl et al. 2023
 - \circ M < 0.01 unrimed
 - 0.01-0.1 lightly rimed 0
 - 0.1-1 moderately rimed 0
 - $M \ge 1.0$ heavily rimed 0

(a)

Maherndl et al. (2023)

Results | Shape Distribution

CASE STUDY PARTICLE SHAPE DISTRIBUTION, IN GOTHIC ON 2022-12-06, SAIL

Results | Shape Distribution

CASE STUDY

PARTICLE SHAPE DISTRIBUTION DMAX >=10PX, 0.58MM, IN GOTHIC ON 2022-12-06, SAIL

- mostly aggregates and stellars
- plates and needles
- some graupel
- few unclassified particles

Results | State of Riming Distribution

CASE STUDY

UNIVERSITÄT

Results | Degree of Riming Distribution

CASE STUDY

Degree of Riming DMax >=10px, 0.58MM, in Gothic on 2022-12-06, SAIL

SAIL: Distribution of degree of riming, DMax>=10px

- more rimed particles than unrimed particles
- some unrimed particles
- many heavily rimed particles

Results | Particle Shape and Degree of Riming

CASE STUDY

LEIPZIG

Degree of Riming vs. Particle Shape in Gothic in December 2022, SAIL, DMax >= 10px

Results | Particle Shape and Degree of Riming

CASE STUDY

LEIPZIG

Degree of Riming vs. Particle Shape in Gothic on 2022-12-06, SAIL, DMax >= 10px

Results | Particle Shape and Degree of Riming

CASE STUDY

LEIPZIG

Degree of Riming vs. Particle Shape in Gothic in December 2022, SAIL, DMax >= 10px

Summary & Outlook | Take home message

WHAT WE DID:

- Wind and turbulence study
- Precipitation rate and polarimetric variables
- Relation between particle size and KDP
- Relation between wavelength ratio and KDP
- KDP during Fallstreaks
- Algorithm for shape detection
- Case studies and statistics of particle properties (size, shape, riming)
- Presentations/Posters at AGU, Snowfall Workshop, ...
- Drafts in the pipeline

LEIPZIG

HOW WE WANT TO GO ON:

- Combine particle properties with Radar variables
- Include polarimetric parameters to PAMTRA
- Estimate polarimetric scattering properties

BACKUP: WIND RETRIEVAL

UNIVERSITÄT LEIPZIG

Institute for Meteorology

veronika.ettrichraetz@uni-leipzig.de | anton.koetsche@uni-leipzig.de