

PROM meeting Leipzig July 24, 2024

A new aggregation and riming discrimination algorithm based on polarimetric weather radars

METEOROLOGIE

Armin Blanke¹, Mathias Gergely², Silke Trömel^{1,3}

1. Institute of Geosciences, Department of Meteorology, University of Bonn 2. German Meteorological Service (DWD), Observatorium Hohenpeißenberg 3. Laboratory for Clouds and Precipitation Exploration, Geoverbund ABC/J

The need for an area wide algorithm for riming detection purely based on slant-viewing polarimetric radars.

1. Create QVPs of Z_H , Z_{DR} and depolarization ratio DR

- 2. Ground truth: MDV from processed and corrected Doppler Spectra
- **3. Testing various machine learning methods**
- 4. Finding best performing algorithm
- **5. Evaluation on independent test case**

Is DR alone sufficient to detect riming?

$$\mathsf{DR} = 10\log_{10} \left[\frac{1 + Z_{dr} - 2\rho_{hv} Z_{dr}^{1/2}}{1 + Z_{dr} + 2\rho_{hv} Z_{dr}^{1/2}} \right]$$

- DR is a good proxy for radar circular depolarization ratios
- presented as potential candidate for riming detection (Ryzhkov et al., 2017)
- Similar to Z_{DR} , DR is lower in rimed snow than in aggregated snow
- Difference in DR is larger (2-4 dB) than for Z_{DR} (0.2-0.4 dB)

1. Apply postprocessing algorithm to isolated weather signal following Gergely et al. (2022) and calculate mean profiles for every 5 min

2. Creation of MISP time series of MDV

Convenient time vs. height format allowing direct comparisons to QVPs

DFG

Workflow

General specifications

- Initial data set: 5 cases
- Training: 70% Hold-out: 30%
- Riming: 21% No Riming: 79%
- scikit-learn Python machine learning library (Pedregosa et al., 2011)

Overview of classification techniques:

Classifier	Abbreviation
threshold-based approach	TB
logistic regression	LR
quadratic discriminant analysis	QDA
gradient boosting machine	GBM
artificial neural network	ANN

Results: initial data set

convert to binary fields:

RIMING

NO RIMING

Performance measures

lassifier	ACC	BA	F1 score	MCC	NMCC	J
В	0.77	0.58	0.32	0.2	0.6	0.
R	0.8	0.58	0.29	0.27	0.64	0.
DA	0.81	0.59	0.32	0.34	0.67	0.
BM	0.84	0.68	0.52	0.47	0.73	0.
NN	0.82	0.65	0.46	0.38	0.69	0.

winner: fine-tuned gradient boosting model

 κ

Results: independent data set

Evaluation on Ahr flooding event in western Germany 2021

Performance measure

Classifier	ACC	BA	F1 score	MCC	NMCC	J
GBM	0.94	0.74	0.51	0.47	0.74	0.

Shapley v	alues (Shapley e & decomposition	et al. 1953) s	
Predictor	Independent ψ	Initial ψ	 Mean Z Mean Z Mean Z
Z_H	0.36 (49 %)	0.31 (40.5 %)	• Mean N
Z_{DR}	0.18 (24 %)	0.21 (28.5 %)	• Mean R
DR	0.20 (27 %)	0.24 (31 %)	

GONGLUSIONS

 Successfully developed an area wide riming algorithm based on slant-viewing polarimetric radars only (WP-6)

 Widely used binary scores demonstrate that the best performing GBM algorithm performs well and is able to correctly predict 74% (BA) of observed riming features

 With the help of Shapley values it was shown that DR provides a crucial contribution towards the algorithm development

Questions, suggestions? Contact:

ablanke1@uni-bonn.de

DFG

PROM meeting Leipzig July 24, 2024

A new aggregation and riming discrimination algorithm based on polarimetric weather radars

METEOROLOGIE

Armin Blanke¹, Mathias Gergely², Silke Trömel^{1,3}

1. Institute of Geosciences, Department of Meteorology, University of Bonn 2. German Meteorological Service (DWD), Observatorium Hohenpeißenberg 3. Laboratory for Clouds and Precipitation Exploration, Geoverbund ABC/J

