

A seamless profile of the precipitation process of mixed-phase clouds employing data from a polarimetric C-band radar, a Micro Rain Radar and disdrometers (HydroColumn) –

Supercell multi-Doppler analysis + retrieval of the hail size distribution

M. Gergely, M. Frech (PI), DWD

(and A. Böhm, F. Seeger, R. Feger at DWD + M. Bell at CSU)

Supercell hailstorm on 30 April 2021

17 July 2023 PRC

Radar setup

• DWD C-band radars at Memmingen (**MEM**), Isen (**ISN**), and at observatory Hohenpeißenberg (**MHP**)

Radar setup

• DWD C-band radars at Memmingen (**MEM**), Isen (**ISN**), and at observatory Hohenpeißenberg (**MHP**)

Radar setup

• DWD C-band radars at Memmingen (**MEM**), Isen (**ISN**), and at observatory Hohenpeißenberg (**MHP**)

SAMURAI software (developed @ CSU) retrieves 3D wind field from multiple Doppler radars

Horizontal cross section at 4 km a.s.l. for radar volume scans at 15:05 to 15:10 UTC (i.e. 17:xy h local time)

SAMURAI software (developed @ CSU) retrieves 3D wind field from multiple Doppler radars

Horizontal cross section at 4 km a.s.l. for radar volume scans at 15:05 to 15:10 UTC (i.e. 17:xy h local time)

- hail at observatory, i.e. at MHP radar
- atmospheric flow from SW, supercell moves W to E, mesocyclone rotation not visible at this height
 - updraft speeds > 10 m/s (at this timestep) in low-reflectivity BWER
- downdrafts stronger than 4 m/s in FFD region to NE
- secondary cell ~ 15 km to SW of main cell (merges 1h later) → no well-developed RFD

17 July 2023 PROM meeting 2023

SAMURAI software (developed @ CSU) retrieves 3D wind field from multiple Doppler radars

SAMURAI software (developed @ CSU) retrieves 3D wind field from multiple Doppler radars

MHP Doppler spectra

MHP Doppler spectra

11

2 main tasks for retrieval of the hail size distribution bin-by-bin:
Doppler velocity → hail size signal power → hail frequency

(some) specific challenges:

- convert uncalibrated power to Z_H
- separate hail from rain mode
- identify height range with hail
- · correct for vertical air motion
- find truncation point at fast velocity
- pick appropriate v-D relationship
- hailstone scattering properties
- scale hail frequency distribution

17 July 2023 PROM meeting 2023

Retrieved hail size distribution

- Plateau for small hailstones
- Maximum hail diameter of 17 to 24 mm

Retrieved hail size distribution

14

• Mean of characteristic properties of hail size distribution for full hail height range of 450 – 1350 m

	D _{min} [mm]	Dmax [mm]	# density [1/m3]	Hit rate [1/(s m2)]	W [g/m3]	Ekin [J/m3]	Hail rate [mm/h]	E flux [Ŵ/m2]	Dmean [mm]	Dmedian [mm]	Dmassmean [mm]	DEmean [mm]	E(DEmean) [J]	E(Dmax) [J]
bin retrieval	5.0	20.94	1.78	13.14	0.42	0.02	13.2	0.15	8.67	11.22	10.96	11.67	0.02	0.28
exp. fit in log	5.0	20.94	3.88	23.93	0.36	0.01	8.98	0.07	6.49	7.31	7.91	8.98	0.01	0.28
exp. fit in lin	5.0	20.94	1.79	13.62	0.59	0.03	21.27	0.35	8.82	12.8	12.73	14.23	0.06	0.28
gamma fit	5.0	20.94	1.82	13.86	0.61	0.03	22.37	0.38	9.18	14.5	14.01	15.58	0.09	0.28

15

Mean of characteristic properties of hail size distribution for full hail height range of 450 – 1350 m

	D _{min} [mm]	Dmax [mm]	# density [1/m3]	Hit rate [1/(s m2)]	W [g/m3]	Ekin [J/m3]	Hail rate [mm/h]	E_flux [W/m2])mean [mm]	Dmedian [mm]	Dmassmean [mm]	DEmean [mm]	E(DEmean) [J]	E(Dmax) [J]
bin retrieval	5.0	20.94	1.78	13.14	0.42	0.0	13.2	0.15	8.67	11.22	10.96	11.67	0.02	0.28
exp. fit in log	5.0	20.94	3.88	23.93	0.36	0.01	8.98	0.07	6.49	7.31	7.91	8.98	0.01	0.28
exp. fit in lin	5.0	20.94	1.79	13.62	0.59	0.03	21.27	0.35	8.82	12.8	12.73	14.23	0.06	0.28
gamma fit	5.0	20.94	1.82	13.86	0.61	0.03	22.37	0.38	9.18	14.5	14.01	15.58	0.09	0.28

17 July 2023 PROM meeting 2023

• Mean of characteristic properties of hail size distribution for full hail height range of 450 – 1350 m

	D _{min} [mm]	Dmax [mm]	# density [1/m3]	Hit rate [1/(s m2)]	W [g/m3]	Ekin [J/m3]	Hail rate [mm/h]	E flux [Ŵ/m2]	Dmean [mm]	Dmedian [mm]	Dmassmean [mm]	DEmean [mm]	E(DEmean) [J]	E(Dmax) [J]
bin retrieval	5.0	20.94	1.78	13.14	0.42	0.02	13.2	0.15	8.67	11.22	10.96	11.67	0.02	0.28
exp. fit in log	5.0	20.94	3.88	23.93	0.36	0.01	8.98	0.07	6.49	7.31	7.91	8.98	0.01	0.28
exp. fit in lin	5.0	20.94	1.79	13.62	0.59	0.03	21.27	0.35	8.82	12.8	12.73	14.23	0.06	0.28
gamma fit	5.0	20.94	1.82	13.86	0.61	0.03	22.37	0.38	9.18	14.5	14.01	15.58	0.09	0.28

• Relative difference (i.e. bias) of fits vs. bin retrieval

	D _{min}	Dmax	# density	Hit rate	w	Ekin	Hail rate	E_flux	Dmean	Dmedian	Dmassmean	DEmean	E(DEmean)	E(Dmax)
bias exp. log [%]	0.0	0.0	106.8	71.9	-19.2	-47.0	-35.0	-55.9	-24.9	-34.6	-27.7	-23.1	-68.0	0.0
bias exp. lin [%]	0.0	0.0	-2.1	-0.3	32.6	84.2	54.4	124.0	1.7	15.3	17.0	22.9	202.8	0.0
bias gamma [%]	0.0	0.0	1.6	4.9	46.3	105.4	71.6	149.7	5.7	28.2	27.2	32.8	256.3	0.0

• Mean of characteristic properties of hail size distribution for full hail height range of 450 – 1350 m

	D _{min} [mm]	Dmax [mm]	# density [1/m3]	Hit rate [1/(s m2)]	W [g/m3]	Ekin [J/m3]	Hail rate [mm/h]	E flux [Ŵ/m2]	Dmean [mm]	Dmedian [mm]	Dmassmean [mm]	DEmean [mm]	E(DEmean) [J]	E(Dmax) [J]
bin retrieval	5.0	20.94	1.78	13.14	0.42	0.02	13.2	0.15	8.67	11.22	10.96	11.67	0.02	0.28
exp. fit in log	5.0	20.94	3.88	23.93	0.36	0.01	8.98	0.07	6.49	7.31	7.91	8.98	0.01	0.28
exp. fit in lin	5.0	20.94	1.79	13.62	0.59	0.03	21.27	0.35	8.82	12.8	12.73	14.23	0.06	0.28
gamma fit	5.0	20.94	1.82	13.86	0.61	0.03	22.37	0.38	9.18	14.5	14.01	15.58	0.09	0.28

Relative difference (i.e. bias) of fits vs. bin retrieval

	D_{\min}	Dmax	# density	Hit rate	w	Ekin	Hail rate	E_flux	Dmean	Dmedian	Dmassmean	DEmean	E(DEmean)	E(Dmax)
bias exp. log [%]	0.0	0.0	106.8	71.9	-19.2	-47.0	-35.0	-55.9	-24.9	-34.6	-27.7	-23.1	-68.0	0.0
bias exp. lin [%]	0.0	0.0	-2.1	-0.3	32.6	84.2	54.4	124.0	1.7	15.3	17.0	22.9	202.8	0.0
bias gamma [%]	0.0	0.0	1.6	4.9	46.3	105.4	71.6	149.7	5.7	28.2	27.2	32.8	256.3	0.0

18

Thank you

17 July 2023 PROM meeting 2023

Extra slides

Triple-Doppler analysis horizontal cross sections at 2 km a.s.l.

Triple-Doppler vs. dual-Doppler analysis

Differences most pronounced close to MHP radar and around storm core

Differences triple – dual Doppler analysis

Extra hail size distributions

MHP 29 June 2021

• FLD 22 June 2023

