

Augmenting the German weather radar network with vertically pointing cloud radars: implications of resolution and attenuation

Christian Heske^{1*}, Florian Ewald¹, Silke Groß¹ Gregor Köcher², Tobias Zinner², Bernhard Mayer²

¹ Institut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt, Oberpfaffenhofen ² Meteorologisches Institut, Ludwig-Maximilians-Universität, München

*Contact: Christian.heske@dlr.de

Knowledge for Tomorrow

Motivation

S-Band NEXRAD measurements of squall line event measured in Morris, Oklahoma 20.05.2011

Motivation

S-Band NEXRAD measurements of squall line event measured in Morris, Oklahoma 20.05.2011

→ Ice particle shape and density have a large influence on the spatial partition of convective and stratiform region

Phase 1: Combination of two spatially separated radars

RHI scans of POLDIRAD (C-band) + RHI scans of MIRA-35 (Ka-band)

Stratiform snowfall precipitation in 2019

Tetoni et al. (2022)

Phase 1: Retrieval development ZDR + DWR (PhD Eleni Tetoni)

Phase 2: Combination of two spatially separated radars Research question 1: dedicated / operational ?

Phase 2: Combination of two spatially separated radars Research question 1: dedicated / operational ?

Phase 2: Combination of two spatially separated radars Research question 1: dedicated / operational ?

Time UTC [hh:mm]

Profiles + RHI, 57km

Time UTC [hh:mm]

Phase 2: DWD data from 07.07.2019

Profiles + PPI, 39km

Time UTC [hh:mm]

1st Year of the PhD so far

T-Matrix Simulations

- Changed from Eleni's single/double model approach to the p3 model
- Added MDV as simulation
 output

Morrison and Mildbrandt (2015)

1st Year of the PhD so far

T-Matrix Simulations

- Changed from Eleni's single/double model approach to the p3 model
- Added MDV as simulation output

Khvorostyanov and Curry (2002) Khvorostyanov and Curry (2005) Mitchell and Heymsfield (2005) Heymsfield and Westbrook (2010)

Backup

Phase 2: Combination of two (or more) spatially separated radars

Extract vertical profile of C-band RHI scan at position of Mira-35 for all available RHI scans

Phase 1 results: Ice retrieval case study of 30.01.2019 at 10:08 UTC

Timely matching Mira data pixels to RHI/PPI scan times

Measurement times RHI/ RHI extracted from PPI T = 0s T = +20s T = +40s T = +60s

Measurement time of Mira Profile (wrong average time of 20s for better understandability) T = 0sT = +20sT = +40sT = +60s

Extracted quasi-vertical profiles over musi-

Motivation

Results

RQ3: Sensitivity studies

Contribution of polarimetry

Above MIRA-35:

- the ambiguity for the different AR values is larger
- ZDR constrains the shape
- ZDR helps in the size retrieval

DLR

+POLDI vorher, Datenverfügbarkeit ansprechen

ΗP

Motivation: Radar geometry to constrain microphysics

Motivation: Radar geometry to constrain microphysics

Phase 1: Summary

Data

RHI data of C-band and Ka-band radars pointing to each other

Phase 1: Summary

Data	RHI data of C-band and Ka-band radars pointing to each other
Simulation	T-matrix scattering simulations based on soft spheroid model and mass-size-relationships

Phase 1: Summary

Data	RHI data of C-band and Ka-band radars pointing to each other
Simulation	T-matrix scattering simulations based on soft spheroid model and mass-size-relationships
Retrieval	Ze, ZDR, DWR -> AR, Dm, IWC

