IcePolCKa

1

Investigation of Convective Evolution towards stratiform Precipitation using simulatiOns and poLarimetric radar observations at C- and Ka-band Contribution to Priority Programme SPP 2115: Polarimetric Radar Observations meet Atmospheric Modelling (PROM)

Gregor Köcher¹

Tobias Zinner¹, Christoph Knote^{1,3} Florian Ewald², Martin Hagen², Christian Heske²

1: Meteorologisches Institut, Ludwig-Maximilians-Universität München (LMU)

2: Institut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt, Oberpfaffenhofen (DLR)

3: Medizinische Fakultät, Universität Augsburg

IcePolCKa:

Motivation

2

What are current problems in weather forecasting?

Convection

- Time horizon for accurate predictions: Few hours
- White et al (2017): Strong variation between convective cases

Statements about uncertainties only possible based on statistics over a large set of data

Microphysics

- Microphysics hard to observe on high level of detail
- Type of particle, particle shape, particle size, ...

Novel observations needed: Dual-frequency and polarimetric radar observations

Model vs Observation: How to compare

- Comparison in observation space (using CR-SIM)
- Comparison over Mira35 domain

PPI Strategy

- Comparison over **30** days
- Low vertical resolution but good spatial coverage

RHI Strategy

- Comparison over **5** days
- High resolution profiles but low spatial coverage

WRF simulations:

Model setup

- WRF: Weather Research and Forecasting Model (Skamarock et al, 2019)
 - Regional numerical weather prediction model (NWP)
- Different **MP**-schemes:
 - Bulk (Thompson 2-mom, Morrison 2-mom, Thompson 2-mom aerosol aware)
 - Spectral Bin (Shpund 2019)
 - P3 (Morrison and Milbrandt 2015)
- Comparison to operational NWPs:
 - Grid spacing at ~2km (e.g., ICON, 2.1 km)
 - Typically bulk MP-schemes

Towards modelling: Strategies to compare model and observation

Goal: Improvement of microphysics schemes

- Use polarimetric and dual-wavelength measurements to analyze model performance
- Comparison in parameter space or observational space
- Use as many measurements as possible to get sound statistics

Statistical comparison: CFADs of reflectivity

Above the melting layer height

• Thompson often show extreme reflectivities of more than 45 dBZ

- Produced mostly by graupel (and some lifted rain)
 - Simulated graupel could be:
 1)Too frequent
 2)Too large
 3)Too dense

Köcher et al (2022), AMT

Statistical comparison: CFADs of reflectivity

Below the melting layer height

- Simulations agree on average reflectivity with each other
- Compared to observations,
 simulated reflectivities are too
 high
 - Reflectivity comes mostly from rain
 - Suggesting that particle size distributions (PSDs) contain too many large drops

Köcher et al (2022), AMT

Statistical comparison: CFADs of differential reflectivity

Below the melting layer height

- All schemes except spectral bin show spread to high ZDR
 - \succ Signal mainly from rain
 - Suggesting that spectral bin better captures the rain PSD
 - All other schemes produce too many (isolated) large drops

8

What does this all mean for forecast at the ground? Statistics of high impact weather events

- 1) NWP simulations and radar observations of **30** convective days
- 2) Simulate **polarimetric radar signals** from NWP output
- 3) Apply **hydrometeor classification** on simulated and observed radar signals
- 4) How **frequently** did precipitation with reflectivities higher than **'x'** occur?
- 5) Shown is the minimum (dashed dotted), **mean** (solid) and maximum (dashed)

Köcher et al (2023), ACP

Statistics of high-impact weather events: Heavy rain

Morrison and SBM heavy rain:

- Least frequent based on reflectivity
- Most frequent based on simulated mass mixing ratio

Role of PSD?

Heavy rain statistics: Role of the PSD

Thompson 2-mom 10^{7} Morrison and SBM heavy rain: Thompson aerosol 10^{6} Morrison 2-mom FSBM High number of small drops 10^{5} P3 Particles (1/(kg m)) 10^{4} Low number of large drops 10^{3} 10^{2} 10^{1} Too few large drops! 10^{0} 0

0

Diameter (mm)

Δ

3

2

Köcher et al (2023), ACP

6

11

5

Summary and conclusions:

What aspects of the microphysics can be improved?

- Graupel too large in some schemes
- Rain DSD not correctly simulated
 - SBM/Morrison miss large drops
 - Thompson/P3 simulate large drops too frequently
- Inability to reproduce extreme hail reflectivities (density assumption?)

Next steps

- Extend to exchange of mass between strong cores and stratiform precip regions
- Include this into cell detection and monitorig over time
- Lagrangian analyses including time development

IcePolCKa in a nutshell

What role do ice particle properties play in the partitioning in convective and stratiform regions?

Horizontal advection

Vertical transport

Preliminary Work (Phase 1)

Development of tools to identify microphysical fingerprints in polarimetric, multi-λ data

Cell tracking statistics (LMU)

- Domain / cell-based studies
- C-band network + Ka-band
- Different microphysic schemes
- Statistics of DWR and ZDR

Microphysics retrieval (DLR)

- Synchronized C/Ka-band scans
- T-matrix scattering simulations
- Retrieval of shape, size, IWC
- Combination of ZDR + DWR

Work program (Phase 2)

Identification of notable differences between model/obs in a combined horizontal/vertical framework

Conv./strat. evolution (LMU) Horizontal context

ZDR + LDR DWR + VEL

13

