

PROM – IMPRINT

Understanding Ice Microphysical Processes by combining multifrequency and spectral Radar polarImetry aNd super-parTicle modelling

> Leonie von Terzi, Stefan Kneifel (Uni Köln/LMU) Jan-Niklas Welss, Axel Seifert (DWD)

IMPRINT objectives and achievements

- Increase understanding of key ice microphysical process (IMP):
 - -Aggregation
 - -Riming
 - -Secondary Ice
- Observational approach: Combined observations using spectral Polarimetry and Multi-frequency radar
- Modelling approach:
 - McSnow (1D): Lagrangian super-particle model allows to implement very detailed ice microphysics
 - Case studies combining McSnow and observations linked by forward simulations

T. Garret, U. Utah

Novel polarimetric radar observations

Tripex-pol

LMU MII

- Nov 2018 Jan 2019
- Zenith X,Ka,W-Band
- Scanning pol. W-Band
- 15 Radiosondes

Tripex-pol-scan

- Dec 2021 Feb 2022
- Zenith X-Band
- Scans with pol. W-Band and Ka-Band
- 50 Radiosondes

Observations were used in many studies!

- Myagkov et al. 2020: evaluation of the reflectivity calibration of W-Band radars based on observations in rain
- Mroz et al. 2020: Triple-frequency Doppler retrieval of characteristic raindrop sizes
- Trömel et al. 2021: Overview: Fusion of radar polarimetry and numerical atmospherical modeling
- Mroz et al. 2021: Linking rain into ice microphysics across the melting layer in stratiform rain: a closure study
- Karrer et al. 2022: Differences of microphysical processes in the melting layer found for rimed and unrimed snowflakes using cloud radar statistics
- Vogel et al. 2022: Using artificial networks to predict riming from Doppler cloud radar observations
- von Terzi et al. 2022: Ice microphysical processes in the dendritic growth layer: a statistical analysis combining multi-frequency and polarimetric Doppler cloud radar observations

Key findings von Terzi et al. 2022

Aggregation in the DGL is correlated to

- MDV slow down at -14°C
- Increase in sZDRmax
- Increase in KDP

- Source of ice particles in DGL needed
 - Fragmentation? \rightarrow FRAGILE project

Work Area 2: McSnow

- Successful implementation of
 - -Habit prediction + shape dependent riming
 - –Secondary ice processes (Hallett-Mossop, Fragmentation based on Philipps et al. 2017)
- → Welss et al. 2023, James (under review)
- 1D case studies
 - Investigating influence of dendritic growth on polarimetric variables (von Terzi 2023, PhD Thesis)
 - Impact of second mode on aggregation (von Terzi 2023, PhD Thesis)
 - Dendrite case study (Publication planned)
 - Needle case study (Publication planned)

Work Area 2: McSnow – Habit prediciton

- Habit of ice particles determines:
 - -Interaction with other particles:

- -Interaction with electromagnetic waves
- →Predicting the habit is crucial for understanding IMP and linking model to (polarimetric) radar observations
- Habit prediction was evaluated against and adapted with polarisability ratio (ρ_e) observations

Work Area 2: McSnow – 1D case study

McSnow is able to represent observations (with some caveats)!

Work Area 3: (polarimetric) forward simulations

- PAMTRA-pol with Lu database:
 - Lu only has a few shapes,
 which did not represent
 McSnow simulations

PROM meeting, 17.06.2023, Leonie von Terzi

Work Area 3: (polarimetric) forward simulations

- PAMTRA-pol with Lu database:
 - -Lu only has a few shapes, which did not represent McSnow simulations
 - McSnow output was difficult to input into PAMTRA because it does not follow predefined mD/AD/phiD-relations or PSD shapes
- McRadar:
 - -Interface between pyTmatrix, snowScatt (Ori et al. 2021) and McSnow
 - -Includes noise and turbulence convolution

Ways forward: my talk for PROM-Fragile on wednesday

What we achieved during IMPRINT – publications

Polarimetric and multifrequency Radar observations

- Myagkov et al. 2020: Calibration evaluation
- Mroz et al. 2020: Triple-freq.
 retrieval of raindrop sizes
- Trömel et al. 2021: Overview
- Mroz et al. 2021: Retrieving IMP across the melting layer
- Vogel et al. 2022: predict riming from radar observations
- Karrer et al. 2022: statistical analysis of melting
- von Terzi et al 2022: Statistical analysis of the DGL

Comparison Radar – Model

- Ori et al. 2020: Evaluation of ICON with radar observation
- Bringi et al. 2020: case study of Hurican Dorian

Modelling: McSnow and ICON

Welss et al. 2023: McSnow2.0 (under review)

- Ori et al. 2021: snowScatt

What we achieved during IMPRINT – summary

Polarimetric and multifrequency Radar observations

Aggregation in the DGL might be linked to

- Updraft at -15°C
- second spectral mode
- Growth of new ice crystals

− Fragmentation
→ FRAGILE

Comparison Radar – Model

- McSnow is principally able to reproduce key observational freatures
- Second mode does not enhance aggregation
- Ice particles need to be nucleated within DGL to reproduce pol. observations

Modelling: McSnow and ICON

 Key IMPs implemented in McSnow (habit prediction, riming, SIP)

Thanks for your attention! Questions?

Appendix

PROM meeting, 17.06.2023, Leonie von Terzi

Work Area 2: McSnow – 1D case study

• McSnow is able to represent observations

Work Area 3: (polarimetric) forward simulations

