

SPP 2115

PRISTINE

Polarimetric Radar simulations with realistic lce and Snow properties and mulTI-frequeNcy consistency Evaluation

Jana Mendrok, Ulrich Blahak (DWD)

Suomi Dutta, Davide Ori (Uni Köln)

+ contribs by J. Steinheuer, ... (Uni Bonn)

SPP 2115

Polarimetric radar operator

- Approach: add polarimetry to EMVORADO, but keep existing core features & characteristics
 - consistent model coupling, sensor (network) modelling
 - hydrometeor property assumptions (e.g. hydrometeor morphology & melting state)
 - speed (\rightarrow bulk scattering lookup-tables)
- Added scattering model option: T-Matrix + angular moments \rightarrow
 - default: shape (AR), orientation (s_b) , melt fraction dependence from Ryzhkov et al. (2011)

liquid	rain	ice	snow	graupel, hail		a a a
Rayleigh	oblate spheroids	oblate spheroids	oblate spheroids	oblate spheroids	shape	
-	Brandes (2002) f(deg4-in-D)	Matrosov (1996) thick plates aD^b $(\rightarrow 0.2)$	0.8	1.0-0.02*D 0.8 (D>10mm)	AR	Basic orientation
-	10°	10° 25° (Bukovcic, p.c.)	40°	40°	S _b	Tiltod orientation
-	-	both: lin. in f_m to rain	both: lin in f _m to rain	AR: lin. in f_m between AR _{wet} =[AR _{dry} ,0.8,0.48,AR _{rain}] for f_m =[0,0.2,0.8,1] s: lin. in f_m to rain	melting behaviour (f _m =mass melt fraction)	90°-B

state-of-the-art, but has its issues

Deutscher Wetterdienst

Wetter und Klima aus einer Hand

Motivation: lack of snow polarimetric signatures

PROM

DF

Polarimetric "void" in dendritic growth layer

PROM Allhands Meeting – 24.-26. July 2024

Motivation: lack of snow polarimetric signatures

- Polarimetric "void" in dendritic growth layer
 - persists till quite extreme AR & $\sigma_{\!\scriptscriptstyle\beta}$

Deutscher Wetterdienst

Wetter und Klima aus einer Hand

 characteristic to low-effectivedensity proxies (spheroids, hexagonal plates, ...)

PROM Allhands Meeting – 24.-26. July 2024

DWD

Improve DWD's radar operator EMVORADO

- for (better) use in
 - model evaluation: O-B deviations due to NWP model or radar operator?
 - data assimilation: bias reduction (at the source, not post-proc)
- but keeping its capabilities
 - model consistency (esp. PSD, m-D relation)
 - calculation speed (eg. bulk scatt. lookup tables)
 - flexibility in instrument definition, e.g. frequency

Phase 1: Externally prepared model-consistent LUT

- a) Quick & (very) dirty: re-use hash ID from TMat template
- b) make up own, simplified hash for SSDB: e.g. only consider PSD & m-D
- Phase 2ff: in-EMVORADO LUT preparation

EMVORADO bulk LUT from SSDB ARO data

- Integration canting angle b distribution
 - Gaussian distribution in β with σ_{β} around $\mu_{\beta} = 0^{\circ}$
 - trapezoidal quadrature in β
 - from $\Delta\beta = 1^{\circ} \rightarrow$ negligible impact of choice of quadrature & base variable
 - renormalized \rightarrow relevant for large(r) $\sigma_{\!\scriptscriptstyle\beta}$
- → (Construction of combined size grid from multi-habit data)
- Integration particle size distribution
 - modified Gamma distribution $n(x) = N_0 x^{\mu} \exp(-\Lambda x^{\gamma})$
 - hydrometeor-class specific parameters, governed by model
 - trapezoidal quadrature
 - over non-equidistant size grids (TMat/Mie: Simpson)
 - no renormalization so far \rightarrow to be analyzed

$$\langle Z_{b} \rangle = \int Z^{*} p^{*} \sin \beta \, d\beta = \int Z^{*} p_{z} d\cos \beta$$
$$p = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^{2}}{2\sigma^{2}}}$$

PROM Allhands Meeting – 24.-26. July 2024

Before results: Some notes on SSP-governing microphysics

- Deutscher Wetterdienst Wetter und Klima aus einer Hand
- PSD: modified Gamma distribution (MGD) for all hydrometeor classes $n(x) = N_0 x^{\mu} \exp(-\Lambda x^{\gamma})$
 - reduces to
 - exponential PSD for $\mu = 0$ and $\gamma = 1$
 - power-law PSD for $\Lambda = 0$
 - depending on microphysics scheme, only 1 or 2 free parameters
 - ICON 2mom: $\mu \& \gamma$ fixed, $N_0 \& \Lambda$ determined from prognostic qx and Nx (ie mass and number conc.)
- EMVORADO LUT over

PROM Allhands Meeting – 24.-26. July 2024

- ➔ 1st instance: still missing large aggregates
 - DDA calc time
 - particles with requested m-D from aggregation tool
- 2nd instance: missing small particles (min(Dmax) = 1.4mm)
 - how small aggregates are realistic?
 - how to handle small D in PSD convolution?
 - how frequent, ie how relevant, are small Dmax_{mass-mean}?

Results: Bulk scattering SSP – snow

- reflectivity (sanity check)
 - how frequent, ie how relevant, are small Dmax_{mass-mean}?

- stratiform winter day w/ low or no ML
- RADOLAN-section of ICON-D2
- → 12 14 UTC (init @ 11 UTC)
- ➔ ALL model levels

ROM

- → reflectivity (sanity check)
 - how frequent, ie how relevant, are small Dmax_{mass-mean}?

PROM Allhands Meeting – 24.-26. July 2024

- 2nd instance: missing small particles (min(Dmax) = 1.4mm)
 - how to handle small D in PSD convolution?
- **3rd instance**: supplemented with small-D crystals
 - does well here

PROM Allhands Meeting – 24.-26. July 2024

SPP 2115

ROM

DF

PROM Allhands Meeting – 24.-26. July 2024

13

- 2nd instance: missing small particles (min(Dmax) = 1.4mm)
 - how to handle small D in PSD convolution?
- **3rd instance**: supplemented with small-D crystals
 - · does well here, not that well in polarimetric parameters
 - (these) crystals follow cloud ice m-D

ROM

PROM Allhands Meeting – 24.-26. July 2024

 10^{-6}

 10^{-7}

 10^{-1}

PROM Allhands Meeting – 24.-26. July 2024

100

SPP 2115

Dmax [mm]

ro m

- 2nd instance: missing small particles (min(Dmax) = 1.4mm)
 - how to handle small D in PSD convolution?
- 3rd instance: supplemented with small-D crystals
 - · does well here, not that well in polarimetric parameters
 - (these) crystals follow cloud ice m-D
- supplementation alternatives(?):
 - use mass-equivalent (instead of Dmax-equiv) crystals
 - rescale agg-only-PSD to total mass
 - create crystals with snow m-D $_{10^{-7}}$
 - create smaller aggregates (how?)

PROM Allhands Meeting – 24.-26. July 2024

Results: Bulk scattering SSP – ice

- ➔ polarimetric parameters
 - tendency of DDA-ZDR to increase, DDA-RHV to decrease with size opposite to TMat
 - RHV smaller for stronger tumbling
 - quite clear imprints of crystal habit change

[dBZ] 60

40

20

10⁻²

 10^{-1}

LΗ

mass-normalized

PROM Allhands Meeting – 24.-26. July 2024

SPP 2115

TMat - σ_{β} =10°

TMat - σ_{β} =25°

100

DDA cry - $\sigma_{\beta} = 10^{\circ}$

DDA cry - $\sigma_{\beta} = 25^{\circ}$

 10^{1}

Results: Radar measurements – case intro

ROM

- stratiform (longer-time homogeneous), dry-snow dominated day (little riming, low/no ML): 23 Dec 2018
- from TRIPEx-pol campaign at/around Jülich
 - multi-freq zenith-viewing radar suite
 - polarimetric W-band radar (elev=30°)

X DBZ H 20181223

12-23 12

12-23 18

12-23 15

12-23 21

12-23 03

12-23 06

12-23 09

12000

10000

8000

6000

4000

2000

12-23 Ŏ

range [m]

PROM Allhands Meeting – 24.-26. July 2024

Results: Radar measurements – case intro

Deutscher Wetterdienst Wetter und Klima aus einer Hand

52.00

44.00

36.00

4 🍉 16

- stratiform (longer-time homogeneous), dry-snow dominated day (little riming, low/no ML): 23 Dec 2018
- from TRIPEx-pol campaign at/around Jülich
 - multi-freq zenith-viewing radar suite
 - polarimetric W-band radar (el=30°)
- ➔ from DWD operations
 - network of C-band polarimetric radar (el=0.5°-25°) (near-TRIPEx: ESS, NHL)

PROM Allhands Meeting – 24.-26. July 2024

Results: Radar measurements – QVPs & CFTDs

- ➔ Quasi-Vertical Profile (QVP)
 - single elevation of a single station (distance & homogeneity ↔ vertical resolution & polarimetric signals)
 - single representative (e.g. mean, median) over all azimuths at each range distance bin
 - assigned to range-equivalent height
 - results in one vertical profile per time step
- Contoured Frequency by Temperature Diagram (CFTD)
 - 2D histogram
 - similar to contoured frequency by altitude diagrams (CFAD), but over temperature (requires addit. info), hence makes melting layer structure visible
 - multiple elevations & stations simultaneously possible

PROM Allhands Meeting – 24.-26. July 2024

Results: Radar measurements – QVP (obs)

DWD

Results: Radar measurements – QVP (obs)

Deutscher Wetterdienst Wetter und Klima aus einer Hand

DWD

Results: Radar measurements – QVP (ESS 12°)

- ZH okay in amplitude and ("wave") structure, but "blurred" & too low brightband; with early non-precip layer
- ➔ again, the "polarimetric void" in DGL
- ➔ sharp, but too low BB-top in ZDR

Results: Radar measurements – QVP (ESS 12°)

- ➔ slight increase in ZH above ML; clearer detachment of non-precip layer
- → where cloud ice dominates, clear increase of polarimetric signals (above DGL and in ice [fall?] streaks)
- → in DGL, some increase of ZDR (<0.1dB \rightarrow <0.3dB) and significant decrease in RhoHV (part. in inhomog.)

Results: Radar measurements – QVP (ESS 12°)

Deutscher Wetterdienst Wetter und Klima aus einer Hand

- further increase in ZH above ML
- \rightarrow where cloud ice dominates, even stronger increase of polarimetric signals \rightarrow there's snow, too, obv!
- → in DGL (non-precip layer in part.), further increase of ZDR (\rightarrow <0.6dB) and further decrease in RhoHV

Results: Radar measurements – CFTD (12°)

26

- ➔ similar ZH profile (but lower absolute occurence?), more pronounced BB
- very low spread in ZDR, part. in DGL; too low in DGL, too high above, pronounced ZDR-BB (unlike obs)
- Iow spread in KDP, too low values above ML, slight KDP-BB (unlike obs)
- no RhoHV signal at all anywhere (except a super-slight bump at ML-bottom(?))

Results: Radar measurements – CFTD (12°)

27

- slight increase in ZH, reduced slope above ML
- increase of ZDR and spread in DGL, strong increase (~1dB) on already too high ZDR above DGL
- increase in KDP and spread above ML, mean ok, spread still too low, low values missing
- (too) strong RhoHV decrease and increase of spread in DGL, above still too high w/o spread

Results: Radar measurements – CFTD (12°)

28

- more spread in above-ML ZH, mean as for DDA(a)
- slight further increase at top of DGL, slight decrease above
- slight further increase in above-ML KDP
- slight increase of RhoHV at DGL bottom, slight further derease at DGL top, but too low throughout DGL

- ➔ polarimetric signals in DGL improved, but
 - ZDR still too low
 - KDP slightly too high
 - RhoHV far too low
- ➔ further work on some (important) details needed
 - abrupt habit transition leaves imprint on bulk properties
 - particularly critical for (hydrometeor-class combined) RhoHV
 - small snow-particle handling
- ➔ deeper analysis of case, e.g.
 - diverging effects seen in non-precip vs. precip (or no & w/ ML?) parts of event: low ZDR, super-low RhoHV in precip parts while increased ZDR, moderately decreased RhoHV in detached non-precip part
- → review and refine analysis methods
 - missing non-precip layer in QVP; ML detection in winter cases
 - understand FO-modification inconsistent and seemingly different results in QVP and CFTD

