

1

Assimilation of the reflectivity (and ZDR column) with the OSSE system

Kobra Khosravian 24-26 July 2024

SPP 2115 PROM all-hands meeting

Leipzig

OSSE is an assimilation experiment where instead of real observations, synthetic observations are used.

Synthetic observations are calculated by applying a forward operator to a so-called nature run.

- Synthetic observations are calculated by applying a forward operator to a so-called nature run.
- > Nature run: a model run without data assimilation.

OSSE is an assimilation experiment where instead of real observations, synthetic observations are used.

- Synthetic observations are calculated by applying a forward operator to a so-called nature run.
- > Nature run: a model run without data assimilation.

Nature run (free forecast without assimilation)

- Synthetic observations are calculated by applying a forward operator to a so-called nature run.
- > Nature run: a model run without data assimilation.

- Synthetic observations are calculated by applying a forward operator to a so-called nature run.
- > Nature run: a model run without data assimilation.

- Synthetic observations are calculated by applying a forward operator to a so-called nature run.
- > Nature run: a model run without data assimilation.

- Synthetic observations are calculated by applying a forward operator to a so-called nature run.
- > Nature run: a model run without data assimilation.

- Synthetic observations are calculated by applying a forward operator to a so-called nature run.
- > Nature run: a model run without data assimilation.

• Poor quality of polarimetric radar parameters (here ZDR) measurements.

- Poor quality of polarimetric radar parameters (here *Z*_{DR}) measurements.
- Pretty large discrepancy between simulated *Z*_{DR} from model (here the EMVORADO) and the real observation particularly above the melting layer .

- Poor quality of polarimetric radar parameters (here ZDR) measurements.
- Pretty large discrepancy between simulated ZDR from model (here the EMVORADO) and the real observation particularly above the melting layer.
- OSSE provides insight into the abilities and weaknesses of a defined assimilation system (e.g., ZDR column defined as an object) due to using a perfect model.

- Poor quality of polarimetric radar parameters (here ZDR) measurements.
- Pretty large discrepancy between simulated ZDR from model (here the EMVORADO) and the real observation particularly above the melting layer.
- OSSE provides insight into the abilities and weaknesses of a defined assimilation system (e.g., ZDR column defined as an object) due to using a perfect model.
- Allows for high control over various settings and parameters within the data assimilation system.

Case Study

Deutscher Wetterdienst Wetter und Klima aus einer Hand

20 May 2022

- The nature run:
 - Started from 07 UTC and had 6 pre-run before using the simulated reflectivity to make the synthetic observation.
 - ➤ The initial data came from a 2-mom experiment
 - boundary condition from ICON-EU

Case Study

Deutscher Wetterdienst Wetter und Klima aus einer Hand

20 May 2022

- The nature run:
 - Started from 07 UTC and had 6 pre-run before using the simulated reflectivity to make the synthetic observation.
 - ➤ The initial data came from a 2-mom experiment
 - boundary condition from ICON-EU
- The assimilation run:
 - The initial data came from the same 2-mom experiment
 - ➤ The same boundary condition as the nature run

Case Study

Deutscher Wetterdienst Wetter und Klima aus einer Hand

20 May 2022

- The nature run:
 - Started from 07 UTC and had 6 pre-run before using the simulated reflectivity to make the synthetic observation.
 - ➤ The initial data came from a 2-mom experiment
 - boundary condition from ICON-EU
- The assimilation run:
 - The initial data came from the same 2-mom experiment
 - > The same boundary condition as the nature run
 - Tornado in Paderborn, Germany
 - see the Julian talk for the real case

Nature run (model run without data assimilation)

Deutscher Wetterdienst Wetter und Klima aus einer Hand

20

Nature run (model run without data assimilation)

- Prepare the initial data to ensure sufficient ensemble spread.
 - How do we increase the ensemble spread? By running the model for 7 hours without assimilation.

- Prepare the initial data to ensure sufficient ensemble spread.
 - How do we increase the ensemble spread? By running the model for 7 hours without assimilation.

- Prepare the initial data to ensure sufficient ensemble spread.
 - How do we increase the ensemble spread? By running the model for 7 hours without assimilation.

- Prepare the initial data to ensure sufficient ensemble spread.
 - How do we increase the ensemble spread? By running the model for 7 hours without assimilation.

- Prepare the initial data to ensure sufficient ensemble spread.
 - How do we increase the ensemble spread? By running the model for 7 hours without assimilation.

Deutscher Wetterdienst Wetter und Klima aus einer Hand

Assimilation run 20 May 2022

Deutscher Wetterdienst Wetter und Klima aus einer Hand

40

20

Assimilation run 20 May 2022

Assimilation run 20 May 2022

Forecast run 20 May 2022

Deutscher Wetterdienst

Wetter und Klima aus einer Hand

Deutscher Wetterdienst

Wetter und Klima aus einer Hand

The OSSE works well for radar reflectivity, as expected.

The OSSE works well for radar reflectivity, as expected.

Next Steps:

- The ZDR should be defined in the same way as the reflectivity composite for the entire German radar network (over the model grid or radar grid points).
 - > Detect the ZDR column.
 - Define the ZDR column as a new observation object within the assimilation system.

Thank you for your attention

Any comments or questions?

Dr. Kobra Khosravian German Weather Service (Data Assimilation Group) Address: Frankfurter Str. 135 63067 Offenbach Tel: +49 (69) 8062-3186 E-Mail: kobra.khosravianghadikolaei@dwd.de

