

POMODORI – Hail and vertical windspeed

Review

DWD

Review

Review

 Deutscher Wetterdienst
 Deutscher Wetterdienst

 Wetter und Klima aus einer Hand
 Image: State of the state of

Hail Doppler spectra

LMU MIM Deutscher Wetterdienst Wetter und Klima aus einer Hand

supercell 30 April 2021 MHP

緣

Hail Doppler spectra

 PROM
 Image: Additional system
 Deutscher Wetterdienst
 Dwb

 MIM
 MIM
 Wetter und Klima aus einer Hand
 Image: Additional system
 Image: Additited
 Image: Additional system

Hail Doppler spectra

 PROM
 Image: Construction of the second second

Comparison of HSDs

 Image: Second system
 Image: Second system
 Deutscher Wetterdienst

 Wetter und Klima aus einer Hand
 Wetter und Klima aus einer Hand

DWD

0

• Hail size distributions:

Hail characteristics:

		D_max [mm]	D_mean [mm]	D_meanmass [mm]	Hail rate [mm h ⁻¹]	E_kin flux [mW m ⁻²]
A	MHP Apr 2021	24.0	8.7	11.0	13.2	151
B	MHP Jun 2021	41.5	10.7	18.0	5.0	89
С	FLD Jun 2023	23.7	6.5	7.0	1.7	10

Minimum hail size = D_{min} : Vertical wind = $v_{DV}(D_{min}) - v(D_{min})$, v_{DV} : radar Doppler velocity v: terminal fall velocity (v-D relationship)

Correction for vertical air motion

Only 1 hail event (variability of hail intensity + few in situ hail sensor data)

Correction for vertical air motion

Only 1 hail event (variability of hail intensity + few in situ hail sensor data)

LMU MIM Vetter

Deutscher Wetterdienst Wetter und Klima aus einer Hand

DWD

0

4x hail at ground 11x hail at altitude

Deutscher Wetterdienst L**MU MI**M Wetter und Klima aus einer Hand

0

DWD

4x hail at ground 11x hail at altitude

PRON

Artifacts due to vertical wind profile, can be mitigated by correction

LMU MIM Wetter und Klima au

Deutscher Wetterdienst

DWD

4x hail at ground 11x hail at altitude

DWD

-18

CorrCoeff = -0.02

-16

-18

Volume scan: Z_H

LMU MIM

RD

DWD

6

Deutscher Wetterdienst

Wetter und Klima aus einer Hand

Volume scan: ZDR

LMU MIM Deutscher Wetterdienst Wetter und Klima aus einer Hand

RO

Volume scan: RHOHV

Deutscher Wetterdienst Wetter und Klima aus einer Hand L**MU MI**M

PRON

0.95

0.90

0.85 AP

0.80

0.75

0.70

Typical hail fall velocity v_h(Z) in m/s, uncorrected and corrected for vertical wind:
 Z linear = 10^{0.1*dBZ}

(-) $v_h(Z) = 4.45 Z_{linear^{0.67/6}}$ (-) $v_h(Z) = 2.44 Z_{linear^{0.67/4}}$ (-) $v_h(Z) = 3.30 Z_{linear^{0.67/6}}$

 $(-) v_h(Z) = 1.77 Z_linear^{0.67/4}$

- Typical hail fall velocity v_h(width) with width = standard deviation of hail mode:
 (-) v_h(width) = 8.04 + 3.84*width
 (-) v_h(width) = 6.15 + 2.83*width
- Vertical (air motion) wind speed v_air(dBZ) in m/s in hail region:
 (-) v_air(dBZ) = 2.55 0.15*dBZ
- Can we resolve non-uniqueness with polarimetry (\rightarrow RHOHV)?

Extra: postprocessing

LMU MIM Deutscher Wetterdienst

Extra: postprocessing

 PROM
 LMU
 Deutscher Wetterdienst
 DWD

 Wetter und Klima aus einer Hand
 Image: State of the state of th

Extra: Radar-hail (cor)relations

Deutscher Wetterdienst Wetter und Klima aus einer Hand

DWD

6

60

4x hail at ground 11x hail at altitude

Artifacts due to vertical wind profile, can be mitigated by correction

Extra: backscatter power law

PRON

LMU MIM

DWD

6

Deutscher Wetterdienst

Wetter und Klima aus einer Hand

Extra: Width vs. reflectivity

