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Motivation and Objectives

Creation of a stratiform climatology of different ice-microphysical retrievals (IWC,

Nt and Dm) and polarimetric variables using large BoXPol dataset

• Comparisons of BoXPol statistics with profiles of ICON runs using EMVORADO as

observation operator [Blahak, 2016]

→ comparison with simulations can reveal inadequate parameterisations and/or

approximations

• Improvement for filtering of stratiform sequences via a new robust and automated

algorithm →
Shannon information entropy [Shannon, 1948] in combination with ML detection

[Wolfensberger et al., 2016]
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Filtering method

• ML detection applied to QVPs, with estimation of an average KDP within the ML

[Trömel et al., 2019]

• Timesteps without detected ML are directly classified as convective

• Homogeneous conditions for successful reduction of statistical errors and stratiform

conditions

• Usage of a normalized version of shannon information Entropy in the range from (0− 1)

0: Total heterogeneous conditions

1: Fully homogeneous conditions

→ calculated over KDP , ρHV and ZDR , ZH in linear scale with subsequent using the

minimum value

→ used entropy threshold of ≥ 0.8 for creating stratiform statistics
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Filtering method example

Figure 1: Horizontal reflectivity ZH (left) monitored with BoXPol on 30 May 2016 at 03:06UTC together with the profile of

calculated minimum normalised Shannon information entropy (right). The applied threshold is indicated as red line and the

excluded sequences displayed as transparent regions.
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Filtered stratiform datasets

• Filtering approach applied to synthetic and observation data:

→ 1168.5 hours of BoXPol observations from 627 different days (2014-2018)

→ 109.2 hours from 11 different days (2017-2018) for JuXPol + BoXPol synthetic data

• To increase statistical significance, ICON simulations of IWC, Dm and Nt of JuXPol +

BoXPol in retrieval space are merged with all simulated C-band stations from DWD
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Used ice-microphysical retrievals and simulated counterparts

Dm(KDP ,Zdp,Zh) =

{
Dm(KDP ,Zdp) if ZDR ≥ 0.4 dB

Dm(KDP ,Zh) if ZDR < 0.4 dB
(1)

IWC(KDP ,Zdr ,Zh) =

{
IWC(KDP ,Zdr ) if ZDR ≥ 0.4 dB

IWC(KDP ,Zh) if ZDR < 0.4 dB
(2)

Nt = Nt(IWC(KDP ,Zdr ,Zh)) (3)

following [Bukovčić et al., 2020], [Bukovčić et al., 2018], [Ryzhkov and Zrnic, 2019] and

[Carlin et al., 2021]

• Simulated Nt is the sum of all number densities [1/m3]

• Simulated IWC is the sum of the densities of all ice hydrometer classes [g/m3]

• and Dm is the ratio of the fourth to the third PSD moment, estimated with the densities

of all ice hydrometer classes
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CFTD of retrieved Dm and simulated Dm

Figure 2: CFTDs of retrieved Dm (left) and simulated Dm (right), with The solid red line representing the mean and the

dashed red lines the 20th and 80th percentiles. The blue line shows the number of samples in a 1 ◦C layer. Temperature

information is taken from ERA5 [Hersbach et al., 2020] and ICON.
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CFTD of retrieved Nt and simulated Nt

Figure 3: CFTDs of retrieved Nt (left) and simulated Nt (right), with The solid red line representing the mean and the dashed

red lines the 20th and 80th percentiles. The blue line shows the number of samples in a 1 ◦C layer. Temperature information is

taken from ERA5 [Hersbach et al., 2020] and ICON.
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CFTD of retrieved IWC and simulated IWC

Figure 4: CFTDs of retrieved IWC (left) and simulated IWC (right), with The solid red line representing the mean and the

dashed red lines the 20th and 80th percentiles. The blue line shows the number of samples in a 1 ◦C layer. Temperature

information is taken from ERA5 [Hersbach et al., 2020] and ICON.
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CFTD of observed ZH and synthetic ZH

Figure 5: CFTDs of observed ZH (left) and synthetic ZH (right), with The solid red line representing the mean and the dashed

red lines the 20th and 80th percentiles. The blue line shows the number of samples in a 1 ◦C layer. Temperature information is

taken from ERA5 [Hersbach et al., 2020] and ICON.
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CFTD of observed ZDR and synthetic ZDR

Figure 6: CFTDs of observed ZDR (left) and synthetic ZDR (right), with The solid red line representing the mean and the

dashed red lines the 20th and 80th percentiles. The blue line shows the number of samples in a 1 ◦C layer. Temperature

information is taken from ERA5 [Hersbach et al., 2020] and ICON.
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CFTD of observed KDP and synthetic KDP

Figure 7: CFTDs of observed KDP (left) and synthetic KDP (right), with The solid red line representing the mean and the

dashed red lines the 20th and 80th percentiles. The blue line shows the number of samples in a 1 ◦C layer. Temperature

information is taken from ERA5 [Hersbach et al., 2020].
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CFTD of observed ρHV and synthetic ρHV

Figure 8: CFTDs of observed ρHV (left) and synthetic ρHV (right), with The solid red line representing the mean and the

dashed red lines the 20th and 80th percentiles. The blue line shows the number of samples in a 1 ◦C layer. Temperature

information is taken from ERA5 [Hersbach et al., 2020] and ICON.
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Conclusions

• Shannon information entropy + ML detection as Filtering technique is very convenient to

check events for stratiform conditions

• The detection of systematic differences between ice-microphysical retrievals (IWC, Nt ,

Dm) and ICON (density based) simulations, as well as polarimetric variables and their

synthetic counterparts, reveals several discrepancies:

1) Generally there is a to small total number of ice particles (very low Nt)

2) This few particles generally experience too much aggregation (high Dm and strong gradient

of ZH aloft), with accompanied unrealistic high fall velocities towards warmer temperatures

3) Strange inverse gradient of the simulated IWC compared to the retrieved IWC, with also

generally too small values in the simulations

→ needs further investigation regarding the complex interplay between different

microphysical processes
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Conclusions

4) Beside too strong aggregation (near 0 dB in ZDR and < 0.1 ◦/km in KDP at around -7 ◦C)

incorrectly assumed onset of wet graupel in EMVORADO, cause a sudden rapidly increase of

ZDR and KDP towards warmer temperatures

5) The inadequate representation of the shape diversity in EMVORADO causes synthetic ρHV

approach generally too high values, except the too low values due to the melting graupel

below the ML
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Polarimetric radar variables in the layers of melting and dendritic growth at x

band—implications for a nowcasting strategy in stratiform rain.

Journal of Applied Meteorology and Climatology, 58(11):2497–2522.

Wolfensberger, D., Scipion, D., and Berne, A. (2016).

Detection and characterization of the melting layer based on polarimetric radar

scans.

Quarterly Journal of the Royal Meteorological Society, 142:108–124.

mailto:toscha@uni-bonn.de

	Appendix

