

Leibniz Institute for Tropospheric Research

Investigating hemispheric differences in aerosol signatures in mixed-phase cloud processes with spectral polarimetric cloud radar observations

Teresa Vogl Supervisors : Heike Kalesse-Los, Patric Seifert

SPP-PROM meeting, Kiel, July 17, 2023

Leibniz Institute for Tropospheric Research

...how aerosol influences riming/ aggregation using vertically-pointing cloud radar observations from both hemispheres

Teresa Vogl Supervisors : Heike Kalesse-Los, Patric Seifert

SPP-PROM meeting, Kiel, July 17, 2023

DACAPO-PESO data set

- Punta Arenas, Chile: clean marine site, mostly sea salt aerosol
- Scarcity in INPs

LEIPZIG

- Mountain ranges causing vertical air motions
- 301 days of measurements

UNIVERSITÄT Institute for Meteorology (LIM) Leipzig

Leipzig data set

- Leipzig, Germany: European continental site with multiple aerosol source regions
- Large abundance of mineral dust
- No orographic lifting
- 488 days of measurements

https://svs.gsfc.nasa.gov/cgi-bin/details.cgi?aid=30017&button=popular https://www.physgeo.uni-leipzig.de/institut-fuer-meteorologie/forschung/ arbeitsgruppefernerkundungundarktischesklimasystem/forschung#c287992

UNIVERSITÄT

LEIPZIG

Institute for Meteorology (LIM) Leipzig

OUTLINE

- How to detect riming in orographic cloud systems (method 1)
- Exploiting peaks in cloud radar Doppler spectra (method 2)
- Outlook: application of developed methods to long-term observations

RIMING DETECTION USING GROUND-BASED RADAR

- rimed particles have large fall velocities > 1.5 m/s
- rime mass fraction can be retrieved using MDV (Kneifel & Moisseev, 2020)
- **Problem**: vertical air motions

need to exploit other radar moments

FINGERPRINTS OF RIMING

- Increase in MDV
- Increase in width
- Nonzero skewness
- Increased reflectivity

- Machine learning techniques well-suited for extracting relationships from large data sets
- Easy-to-use Python implementations

TRAINING DATA SET

For training, we need **pairs of** input x and output $y \rightarrow$ dataset with remote sensing and in-situ observations

PIP (Precipitation Imaging Package) \rightarrow retrieving rime mass fraction **FR**_{PIP}

KAZR & MWACR cloud radars (35 & 94 GHz)

Kneifel et al., 2015

LEIPZIG

Application to Punta Arenas data

Punta Arenas, 2019-02-21

Vogl et al., 2022

Application to Leipzig data

Leipzig, 2021-03-19

4-

Height [km]

trit' 14:00

(b)

51

4-

OUTLINE

- How to detect riming in orographic cloud systems (method 1)
- Exploiting peaks in cloud radar Doppler spectra (method 2)
- Outlook: application of developed methods to long-term observations

PEAKO & peakTree: peak finding and structuring

- Supervised peak detection using PEAKO (Kalesse et al., 2019) parameters: width, prominence, span for smoothing
- Representing sub-peaks in a binary tree structure using peakTree (Radenz et al., 2019)

Validation with in-situ data (collaboration with Uni Cologne & ETH Zürich)

Validation with in-situ data (collaboration with Uni Cologne & ETH Zürich)

LEIPZIG

liquid peak detection & comparison to liquid predicting neural network (Schimmel et al., 2022) Punta Arenas, 2019-03-13

UNIVERSITAT LEIPZIG Institute for Meteorology (LIM) Leipzig

OUTLINE

- How to detect riming in orographic cloud systems (method 1)
- Exploiting peaks in cloud radar Doppler spectra (method 2)
- Outlook: application of developed methods to long-term observations

- PICNICC PROJECT | Teresa Vogi HYPOTHESIS: MICROPHYSICAL GROWTH PROCESSES IN MIXED-PHASE CLOUDS ARE SUSCEPTIBLE TO AEROSOL PERTURBATIONS

 High aerosol loads and high INP concentrations → higher ice crystal concentrations → more aggregation

2. Low aerosol loads and scarcity of INP \rightarrow thicker/ more persistent supercooled liquid layers \rightarrow more riming

aggregate

rimed ice particle

www.inscc.utah.edu/ ~tgarrett/Snowflakes/ Gallery/

Bringing everything together...

How does aerosol influence riming?

- Riming: ANN-based retrieval, particle shape from scans (→ Audrey's work)
- Information on CCN / INP: Can be derived from lidar profiles (Mamouri & Ansmann, 2016; Gong et al., 2022)
- Attribution: Which part of the difference we observe is due to aerosol effects (and not due to meteorology/ orography)?

Thank you!

BACKUP SLIDES

UNIVERSITAT LEIPZIG Institute for Meteorology (LIM) Leipzig

TRAINING DATA SET

ANN specifications

- split into **training/ validation** & **testing** data sets
- scaling the input data using a robust scaler
- k-fold cross validation to determine
 hyperparameters
- **ANN#1:** x = Ze, SEW, skewness, MDV
- **ANN#2:** x = Ze, SEW, skewness

Artificial Neural Network

~15:30: turbulence, drizzle + cloud, one peak detected ~15:45: skewness signal increases in the fall streak (due to more drizzle?), still one peak only

16:30

16:30

16:30

16:30

- 0.5

-0.5

- -1.0 🧕

-1.5

-2.0

- 0.0

~15:50: three changes happening at once: chirp change, less turbulence, ice appears in in-situ data, 2+ peaks are detected

Schimmel et al. 2022

Table 2. Overview on location, data availability, climate, aerosol load, and related studies for the data sets used. The altitudes are given above mean sea level (a.s.l.).

Location	Punta Arenas, Chile, 53.1° S, 70.9° W	Leipzig, Germany, 51.3° N, 12.4° E
Station altitude	9 m a.s.l.	125 m a.s.l.
Campaign name	DACAPO-PESO	LIM
Measurement period	301 d	488 d
Cloudnet availability	262 d	400 d
Climate Typical aerosol load Related studies	Southern mid-latitudes Marine, occasionally continental Kanitz et al. (2011) Ohneiser et al. (2020) Bromwich et al. (2020) Jimenez et al. (2020) Floutsi et al. (2021) Radenz et al. (2021) Vogl et al. (2022)	Northern mid-latitudes Continental background, occasionally dust Ansmann et al. (2005) Seifert et al. (2010) Bühl et al. (2013) Bühl et al. (2016) Radenz et al. (2021) Vogl et al. (2022)