The PolarCAP project

Combined remote sensing and modelling of cloud microphysical perturbations in supercooled stratus clouds

Willi Schimmel, Fabian Senf, Roland Schrödner, Jens Stoll, Kevin Ohneiser, Patric Seifert

Leibniz Insitute for Tropospheric Research (TROPOS), Leipzig, Germany

PROM All-hands Meeting – Kiel 2023

Leibniz Institute for

Tropospheric Research

ROPOS

PolarCAP – Objective

By utilizing cloud seeding, it is possible to disentangle the contributions of primary and secondary ice formation to the glaciation process of supercooled stratiform clouds.

-10...0 °C

* release or consumption of latent heat ¹,Riming': only considered if sufficient liquid water present on ice crystals

freely.

interactions.

precipitation.

COSMO-SPECS

Vertical advection Sedimentation

Source: R. Schrödner

TROPOS

COSMO Model Domain – Eriswil

Version: EXTPAR-5.2.1

README

Click on a box for info

origin lon	7.8507		
origin lat	47.0799		
ie_tot	42		
je_tot	32		
startlon	-0.08		
startlat	-0.08		
dlon	0.005		
dlat	0.005		
Orography	GLOBE ~		
Orographic Filtering	No v		
Subgrid-scale Slope	No v		
Land use	GLOBCOVER ~		
Soil	FAO-DSMW ~		
Aerosols	NASA/GISS ~		
Surface Albedo	MODIS dry & sat ~		
TERRA_URB	None ~		
E-mail Address			
View Mode	2D (ESRI) V		
preview reset submit			

dim:
$$x = 42$$
, $y = 32$, $z = 50$

Leaflet | Tiles © Esri – Source: Esri, DeLorme, NAVTEQ, USGS, Intermap, iPC, NRCAN, Esri Japan, METI, Esri China (Hong Kong), Esri (Thailand), TomTom, 2012

Torch Flare Implementation via Namelist

no dilution by cell volume -> filled whole cell

• no accumultion, INP concentration is kept constant for burning time

&FLARE_SBM		
lflare	=.	true.
flare_starttime	=	120.
flare_endtime	=	330.
flare_btime	=	30.
<pre>flare_restart_intervall</pre>	=	900.
flare_hight	=-	-43
flare_emission	=	8d8
<pre>flare_effect_temp</pre>	=	268

Torch Flare Test Case

Closure with forward simulator PAMTRA

Passive and Active Microwave radiative TRAnsfer tool for simulating radiometer and radar measurements of the cloudy atmosphere [Mech et al. 2020 GMD]

Input:

- the atmospheric state: P, T, U, V, W, RH, cloud water/ice content, mixing-ratio and number concentration: rain, snow, graupel, hail, droplets, crystals
- the assumption on absorption,
 scattering, and surface emissivity,
- instrument specifications

Output:

- polarized radiances or brightness temperature for the passive part and LWP, IWP
- radar Doppler spectra and derived moments (Ze, mdv, width, ...)

Initial (assumed) aerosol distribution

Add water until equilibrium with water vapor in the surrounding

Discretize into given SPECS bins (66 at present ~1 nm - 4 mm)

Add already existing COSMO cloud and ice water

