

Armin Blanke, Silke Trömel Institute of Geosciences, Department of Meteorology

armin.blanke@uni-bonn.de

PROM meeting Kiel (online) July 18, 2023

PROM - POLICE UNIVERSITÄT BONN **Riming detection algorithm**

Goal: Radar algorithm to discriminate between aggregation and riming

Data: C-band radar data

- Selected riming cases from DWD's Essen (ESS) radar
- Make use of promising depolarization ratio (DR) and check with Doppler spectra fall velocities
- Doppler spectra from birdbath scans of all 17 operational DWD radars since 18.05.2021
- New method: Isolated Doppler spectra (Gergely et al. 2022) displayed as VP in time vs. height format
- VPs: fall velocity, signal power, rime mass fraction (RMF, Kneifel and Moisseev 2020)

Radarverbund des Deutschen Wetterdienstes Deutscher Wetterdienstes

Legende

- operationelles Verbundradar
- Qualitätssicherungsradar
- Ausfallsicherungsradar (Ersatz für Radarstandort Emden)
- 150 km Abdeckungsradius

0 20 40 80 120 160 Kilometer Maßstab 1:3.000.000 Stand: 07.03.2018 © GeoBasis-DE / BKG 2017

Doppler spectra vertical profiles

3

G-band QVPs

8
10
- –12
-14 🙃
-16 0
- –18 – – 19 – –
19 .0
rizat rizat
- –21 <u>8</u>
- <u>–</u> 22 O
- –23
- –24
- –25
-26

How do we find riming periods? Via threshold based detection routine

r₁: DR vs. Z_{DR} r₂: DR vs. fall velocity Mean fall velocity = -1.06 m/s

Mean fall velocity = -1.63 m/s

5

How do we find riming periods? Via quadratic discriminant analysis (QDA) / logistic regression (LR)

Binary classification test Via threshold based algorithm

QDA and LR

Mean RMF: 0.42 Mean fall velocity: -1.45 m/s

Jaccard coefficient: 0.236 F1 score: 0.38, accuracy: 0.786

DFG Case with intense vertical air motion Mean RMF: 0.492 Mean fall velocity: -1.6 m/s Jaccard coefficient: 0.469

F1 score: 0.68, accuracy: 0.853

How do we find riming periods? Via saggy periods routine

Find sagging via first derivation of ML top and bottom (rolling mean) + previous time step (precursor) Data only above ML

Conclusion

Automatic filtering algorithms to find intense riming periods where aggregation can be mostly excluded. They are applicable all over Germany.

- Algorithms are capable of finding rimed periods in a stratiform case
- LR algorithm most promising, QDA algorithm overestimates riming, threshold based algorithm too strict (overfitted)
- Saggy periods match nearly any DR <= 22 dB at C-band but do not capture all periods with fast falling particles (sagging of the ML could be used as supporting factor)

- Convection/vertical air motion and spatio-temporal mismatches between fall velocities from birdbath scans and QVPs can lead to missing or unreliable evidence for identified riming cases
- Possibility of overlapping processes at around 1.5 m/s fall velocities (light riming, rimed aggregates)

Further work

• Check the performance of different algorithms on more cases

11

Armin Blanke, Silke Trömel Institute of Geosciences, Department of Meteorology

armin.blanke@uni-bonn.de

PROM meeting Kiel (online) July 18, 2023

PROM - POLICE UNIVERSITÄT BONN **Riming detection algorithm**

