

SPP 2115

Polarimetric Radar simulations with realistic Ice and Snow properties and mulTI-frequeNcy consistency Evaluation

PRISTINE

Soumi Dutta and Davide Ori (University of Cologne)

Jana Mendrok and Ulrich Blahak (DWD)

PROM All-hands Meeting Kiel 2023

Preliminary Work: polarimetric FO

Polarimetric extension of EMVORADO

Based on T-matrix oblate soft spheroids: ZH, ZDR, KDP, PhiDP, LDR, RhoHV, AH Volume scans (range, azimuth, elevation) Values on model grid as intermediate step

- PSDs and mass-size-relations consistent to model microphysics
- "Realistic" assumptions on Particle shapes / canting angles
- Volume scans include propagation effects: attenuation, beam blockage, beam smoothing
- Efficiency by use of look-up tables and parallelisation (MPI, OpenMP)
- Online coupled to COSMO and ICON, offline version available

24h timeseries of synthetic QVPs of ZH and ZDR from ICON-D2 (free) forecast

T-Matrix a great tool with some deficiencies

T-Matrix based simulations show a **consistent deficit** in terms of **polarimetric response** in the dendritic growth layer where large, "fluffy" particles prevail.

Multiple studies identified the spheroidal scattering model as a major source of uncertainty

Strategy

• Extend EMVORADO with new scattering tables and evaluate with real data

Strategy

• Extend EMVORADO with new scattering tables and evaluate with real data

• Simply substitute spheroids with realistic shapes

Strategy

• Extend EMVORADO with new scattering tables and evaluate with real data

- Simply substitute spheroids with realistic shapes
- Ok, but ... which one?

Requirements Questions

- 1) Maintain consistency with the model
- 2) Realistic particle modeling

3) Flexibility on orientation, sizes, frequencies

4) EMVORADO still fast

Is the model microphysics self-consistent?

What is the uncertainty due to natural variability of properties?

TECHNICAL: Address the dimensionality problem efficiently

TECHNICAL: How to preserve the complexity in Look-Up Tables

SELF INTRODUCTION

Current Affiliation

PostDoctoral Researcher Institute for Geophysics and Meteorology University of Cologne, Germany

PhD

Centre for Atmospheric Sciences, IIT Delhi, India & Department of Atmospheric Sciences, UIUC, USA

Soumi Dutta

Transition from Cloud Macro-physics to Cloud Micro-physics

Cloud Remote Sensing from Satellites

Image curtsey : MISR

PhD Thesis

Towards Improved Estimates of Global Cloud Cover by Addressing Uncertainties Involved in Satellite Cloud Remote Sensing

Cloud Remote Sensing from Radars

PostDoc Project PRISTINE

Ice and snow simulations

Simulated dendrite crystals

Reiter algorithm to make dendrites

Image curtsey: Reiter, 2005

Plate crystals for very small (non branched)

Aspect ratio calculation for 2mom dendrite crystals to match with ICON 2mom mass-size relation

Crystal images with new_aspect ratios to match with ICON 2mom masses

Changed aspect ratio of ice crystals to match ICON m-D relationship

Plate size up to 0.5 mm size (Um et al., 2015) (IMPRINT under revision) Dendrite size > 0.5mm

Aggregation is a key microphysical process for the formation of precipitable ice particles.

Observation Snow Aggregation Model 82.7416 1272 33.2903 82.10188 83.4088 mm

Schematic Diagram of aggregation process.

VISSS camera

 $K_{i,j} = (D_i^2 + D_j^2)|v_i - v_j|$

$$
K_{i,j} = (D_i^2 + D_j^2)|v_i - v_j|
$$

Type of monomers: ICON ice crystals

$$
K_{i,j} = (D_i^2 + D_j^2)|v_i - v_j|
$$

Type of monomers: ICON ice crystals

Number of monomers: 2 - 500

$$
K_{i,j} = (D_i^2 + D_j^2)|v_i - v_j|
$$

Type of monomers: ICON ice crystals

Number of monomers: 2 - 500

Monomer size distribution: inverse exponential mean size 0.05 to 1 mm

$$
N(D) \propto \exp(-D/D_0)
$$

30 monomers of thin plate and dendrites 40 monomers of thin plate and dendrites

aggregates using plates (upto 0.5mm) and dendrites (for 2mom ICON microphysics)

ICON Dmin=50e-6m (50 um), Dmax=5cm

Selection of masses from simulated aggregates

aggregated masses within 10% of ICON 2mom masses for 1 to 100 monomers for size parameter 0.05 to 1 mm

mass values corresponding to each ICON size bin

ICON assumptions for snowflakes

Dmin = 50.0e-6 ! 50um and Dmax = 50.0e-3 ! 50mm Divided into 256 linearly spaced size bins

around 70 linearly spaced ICON size bins are filled with snow aggregates for size 1mm to 2cm

Scattering

7D complex problem in Lab Reference Frame $E_{\partial L}^{\rm sca}(r\hat{\mathbf{n}}^{\rm sca})$ $E_{0\vartheta\!L}^\mathrm{inc}$ $=\frac{\exp(ik_1r)}{r}\mathbf{S}^{L}(\hat{\mathbf{n}}^{\text{sea}},\hat{\mathbf{n}}^{\text{inc}};\alpha,\beta,\gamma)$ $E_{0\varphi L}^{\mathrm{inc}}$ $E_{\varphi L}^{\rm sca}(r\hat{\mathbf{n}}^{\rm sca})$

actually 5D *computationally* (scattering directions are for free) and for radar (only backward and forward scattering)

 (a) (b) $|c|$

7D complex problem in LRF $=\frac{\exp(ik_1r)}{r}\mathbf{S}^{L}(\hat{\mathbf{n}}^{\text{sea}},\hat{\mathbf{n}}^{\text{inc}};\alpha,\beta,\gamma)$ $E_{\partial L}^{\rm sca}(r\hat{\mathbf{n}}^{\rm sca})$ $E_{0\vartheta\!L}^{\mathrm{inc}}$ $E_{0\phi L}^{\text{inc}}$ $E_{\varphi L}^{\rm sca}(r\hat{\mathbf{n}}^{\rm sca})$

5D problem for radar (only backward and forward scattering)

2D if horizontally aligned (elevation, azimuth)

 (a) (b) (c)

7D complex problem in LRF $\begin{bmatrix} E_{\vartheta L}^{\rm sca}(r{\hat{\mathbf{n}}^{\rm sca}}) \ E_{\varphi L}^{\rm sca}(r{\hat{\mathbf{n}}^{\rm sca}}) \end{bmatrix} = \frac{\exp({\rm i}k_1r)}{r} {\mathbf{S}}^L({\hat{\mathbf{n}}^{\rm sca}},{\hat{\mathbf{n}}^{\rm inc}}; \alpha, \beta, \gamma) \begin{bmatrix} E_{0\vartheta L}^{\rm inc} \ E_{0\varphi L}^{\rm inc} \end{bmatrix}$

5D problem for radar (only backward and forward scattering)

2D if horizontally aligned (elevation, azimuth)

Constant tilt 10 deg

$$
\alpha = avg \ \beta = 10 \ \gamma = avg
$$

7D complex problem in LRF $\begin{bmatrix} E_{\vartheta L}^{\rm sca}(r{\hat{\mathbf{n}}^{\rm sca}}) \ E_{\varphi L}^{\rm sca}(r{\hat{\mathbf{n}}^{\rm sca}}) \end{bmatrix} = \frac{\exp({\rm i}k_1r)}{r} {\bf S}^L({\hat{\mathbf{n}}^{\rm sca}},{\hat{\mathbf{n}}^{\rm inc}}; \alpha, \beta, \gamma) \begin{bmatrix} E_{0\vartheta L}^{\rm inc} \ E_{0\varphi L}^{\rm inc} \end{bmatrix}$

5D problem for radar (only backward and forward scattering)

2D if horizontally aligned (elevation, azimuth)

Constant tilt 10 deg

Wait! Am I revisiting the same point multiple times?

$$
\begin{bmatrix}\n\mathbf{Z}_{\vartheta L}^{\text{sca}}(r\hat{\mathbf{n}}^{\text{sea}}) \\
E_{\varphi L}^{\text{sca}}(r\hat{\mathbf{n}}^{\text{sea}})\n\end{bmatrix} = \frac{\exp(ik_1r)}{r} \mathbf{S}^L(\hat{\mathbf{n}}^{\text{sea}}, \hat{\mathbf{n}}^{\text{inc}}; \alpha, \beta, \gamma) \begin{bmatrix}\nE_{0\vartheta L}^{\text{inc}} \\
E_{0\varphi L}^{\text{inc}}\n\end{bmatrix}
$$

5D problem for radar (only backward and forward scattering)

... as long as you know how to account for the rotate polarization plane...

Transform PRF to LRF

Michael Mishchenko

Regular "lat-lon" grids are easy to implement but inefficient

inefficient great for horiz. aligned

Regular "lat-lon" grids are easy to implement but inefficient

icosphere grids are equally spaced

inefficient great for horiz. aligned

Regular "lat-lon" grids are easy to implement but inefficient

icosphere grids are equally spaced

Taking power of 2 subdivisions of the seed icosahedron we can improve resolution while "recycling" previous calculations

8 subdivisions:

- **642 nodes**
- 1.34 deg angular separation

 Ω

 -1

Number of vertexes 642

 -1

angular separation 1.34 deg

Number of vertexes¹2562 angular separation 0.32 deg

Number of vertexes 162

angular separation 5.11 deg

1

0

 $^{-1}$

1

0

Number of vertexes 10242 angular separation 0.08 deg

Regular "lat-lon" grids are easy to implement but inefficient

icosphere grids are equally spaced

Taking power of 2 subdivisions of the seed icosahedron we can improve resolution while "recycling" previous calculations

8 subdivisions:

- **642 nodes**
- 1.34 deg angular separation

would have been **36k nodes** on lat-lon!!

 Ω

 Ω

 -1

 -1

 -1

Number of vertexes 642

angular separation 1.34 deg

 -1

 $^{-1}$

Icospheres with [1, 2, 4, 8, 16, 32] subdivisions Number of vertexes 42 angular separation 17.18 deg

Number of vertexes¹2562

angular separation 0.32 deg

 Ω

 $^{-1}$

Number of vertexes 162 angular separation 5.11 deg

0

1

0

 $^{-1}$

1

Number of vertexes 10242 angular separation 0.08 deg

Preliminary results for single crystals

 $\hat{Z}(el) = \int f_{\alpha}(\alpha) f_{\beta}(\beta) f_{\gamma}(\gamma) Z(\alpha, \beta, \gamma, el)$

4D again!! but.. $f_{\alpha}(\alpha) = f_{\gamma}(\gamma) = \frac{1}{2\pi}$

Preliminary results for single crystals

$$
\hat{Z}(el) = \int f_{\alpha}(\alpha) f_{\beta}(\beta) f_{\gamma}(\gamma) \underline{Z}(\alpha, \beta, \gamma, el)
$$

4D again!! but..

2D !!

$$
f_{\alpha}(\alpha) = f_{\gamma}(\gamma) = \frac{1}{2\pi}
$$

 $\mathbf 1$

$$
\langle Z \rangle_{\text{aro}} (el, \beta) = \int f_{\alpha}(\alpha) f_{\gamma}(\gamma) Z(\alpha, \beta, \gamma, el)
$$

