

·R⊡ M

SPP 2115

PRISTINE –

Polarimetric Radar simulations with realistic Ice and Snow properties and mulTI-frequeNcy consistency Evaluation

Jana Mendrok, Ulrich Blahak

Deutscher Wetterdienst

PROM Allhands Meeting – 17.-19. July 2023

\rightarrow Motivation

- → Making EMVORADO fit for external scattering data
	- ⚫ Bulk scattering lookup tables from external data sources
	- ⚫ Orientation averaging
- **→ Outlook**

- ➔ Approach: add polarimetry to EMVORADO, but **keep existing core features & characteristics**
	- consistent model coupling, sensor (network) modelling
	- hydrometeor property assumptions (e.g. hydrometeor morphology & melting state)
	- speed $(→bulk scattering lookup-tables)$
- ➔ Added scattering model option: **T-Matrix + angular moments**
	- **default:** shape (AR), orientation (σ_{β}), melt fraction dependence from **Ryzhkov et al. (2011)**

SPP 2115

Polarimetric radar operator: [T-Matrix] **Issues**

- ➔ Polarimetric radar forward operator state-of-the-art:
	- ⚫ Assume regular-shaped, **homogeneous effective density** in Mie/T-Matrix calculations
		- (most?) popular: fix D_{max} , m, aspect ratio \rightarrow derive effective **(reduced)** density of spheroid

Polarimetric radar operator: [T-Matrix] **Issues**

- ➔ Polarimetric radar forward operator state-of-the-art:
	- ⚫ Assume regular-shaped, **homogeneous effective density** in Mie/T-Matrix calculations
		- most popular: fix D_{max} , m, aspect ratio \rightarrow derive effective (reduced) spheroid density

- ➔ Approach: add polarimetry to EMVORADO, but **keep existing core features & characteristics**
	- consistent model coupling, sensor (network) modelling
	- hydrometeor property assumptions (e.g. hydrometeor morphology & melting state)
	- speed $(→bulk scattering lookup-tables)$
- ➔ Added scattering model option: T-Matrix + angular moments
- ➔ Add option to **use externally calculated scattering data**
	- interface to scattering DB(s)

➔ **Improve DWD's radar operator EMVORADO**

- for (better) use in
	- ⚫ **model evaluation:** O-B deviations due to NWP model or radar operator?
	- ⚫ data assimilation: bias reduction (at the source, not post-proc)
- but keeping its capabilities
	- model consistency (esp. PSD, m-D relation)
	- calculation speed (eg. bulk scatt. lookup tables)
	- flexibility in instrument definition, e.g. frequency

- \rightarrow Motivation
- → Making EMVORADO fit for external scattering data
	- ⚫ **Bulk scattering lookup tables from external data sources**
	- ⚫ Orientation averaging
- **→ Outlook**

- \rightarrow Ensure consistency
	- ⚫ w/ model (PSD, m-D relation)
	- ⚫ w/ EMVORADO setup (e.g. melting scheme)

ensured by file naming scheme using hash-based IDs no user interaction required (nor possible)

- **→** Phase 1: Externally prepared model-consistent LUT
	- ⚫ a) **Overrule/don't apply hash ID**
	- b) Simplified hash number: only consider PSD & m-D
- **→** Phase 2ff: in-EMVORADO LUT preparation
	- Select particles from DB with consistent m-D
		- \bullet (& other constraints here's the science part)
	- Form & use equivalent hash ID

\rightarrow Motivation

- → Making EMVORADO fit for external scattering data
	- ⚫ Bulk scattering lookup tables from external data sources
	- ⚫ **Orientation averaging**
- **→ Outlook**

- ➔ So far: *Angular moments approximation* (Ryzhkov, e.g. 2011)
	- ⚫ Derive polarimetric scattering properties of particles with Gaussian canting distribution from scattering amplitudes of "uncanted" particle
	- ⚫ **Pro:**
		- single orientation output from T-Matrix only (minimum effort & memory)
		- "quasi-analytical" orientation weight factors (easy computation)

⚫ **Con:**

- rotationally symmetric particles only (?)
- easy-to-calculate factors for elevation=0° and specific canting distributions only (oblate: random & Gaussian; prolate: horizontally aligned)

- ➔ Modification: *Explicit orientation averaging*
	- ⚫ Derive polarimetric scattering properties for a set of fixed particle orientation & integrate/average over them
	- ⚫ **Con:**
		- ⚫ more T-Matrix output (more memory; **comp. effort increases only marginally when done correctly**)
		- numerical integration, ie method and sampling point dependent
	- ⚫ **Pro:**
		- any desired orientation distribution (flexible)
		- any radar elevation (flexible)
		- arbitrary particle shapes (flexible)
- ➔ replace angular moments, also for in-EMVORADO SSP calculations from T-Matrix

- \rightarrow Parameters to provide & average:
	- ⚫ Angular moments act on complex scattering amplitudes **S**
		- ⚫ **S** are NOT additive! **(ie not usable in expl. orient. avg.!)**
	- currently, set of additive parameters used in PSD-integration, hydrometeor class add-up, and bulk LUT:
		- ⚫ **zh** (=bsc-xs in h-h), **zv, zvh, rrhv** (=Re(nominator(RHV)), **irhv** (=Im(…)); **kdp, ah** (=ext-xs in h), **adp**

- ⚫ (Stokes) Scattering and extinction matrices (Z and K) are an alternative representation of pol. scatt props
	- additive
	- bsc=f($Z(1:2,1:2)$), nom(RHV)=f($Z(3:4,3:4)$) & ext,kdp=f(K)
- ➔ **use LUT 8-parameter set in canting distrib calc & (already) as new TMat-(wrapper-)output**

Explicit orientation averaging

- **→ Numerical integration:**
	- Over azimuthal (α) and canting (β) orientation angles (for oblate spheroids, γ not applicable due to rotat. symmetry w.r.t. z-axis)
	- Which quadrature scheme?
		- ⚫ Trapezoidal, Simpson; Gauss-Legendre, …?
	- Which polar angle parameter to integrate over?
		- β or cos(β)= μ ?
			- \rightarrow \int Z * p * **sin** β d β = \int Z * p d_u
	- How many quadrature points?
		- not very critical, but β (variable) more than alpha (α)

ROM

Deutscher Wetterdienst

ZDR

Explicit orientation averaging

➔ Numerical integration: Over **canting (**b**)** orientation angles

- ⚫ **What about pdf-contributions from outside +/-90°?**
	- for large(r) σ_{β} , norm(Gaussian pdf) over [-90°,+90°] < 1.
	- ⚫ What to do?
		- nothing? (not an option since not norm-conserving)
		- ⚫ **renormalize**? (current implementation)
		- ⚫ **fold**? (my earlier choice)

Consider any of them "more" (physically) correct?

- \rightarrow From single particle tests:
	- ⚫ Simpson performs bad for polar angle integration
	- Trapezoidal with $\Delta \mu$ =const performs bad
	- Gauss-Legendre better than $\Delta\beta$ =const except for small σ_{β}

Explicit orientation averaging: Choice of dx & spacing

➔ Resulting EMVORADO bulk scattering LUT (dry ice example): Diff to **exp.orient.avg. high-res. reference**

Explicit orientation averaging: Choice of dx & spacing

➔ Resulting EMVORADO bulk scattering LUT (dry ice example): Diff to **exp.orient.avg. high-res. reference**

- ➔ From EMVORADO bulk LUT (dry ice example):
	- Jdμ might mitigates $\beta=0^\circ$ non-contribution issue of Jsin(β)dβ
		- for $\mu(\Delta\beta=const)$:
			- kinks at σ_{β} < $\Delta\beta$ removed in single particle example, but slightly larger offsets in general for same $\Delta\beta$
			- dµ clearly better at σ_β < $\Delta\beta$, similar performance at $\sigma_\beta \approx \Delta\beta$, slightly worse at σ_β > $\Delta\beta$
			- \bullet du overestimates, d β underestimates
	- for large(r) σ_{β} , any $\Delta\beta$ and dx better than **angmom** (clearly underestimates pol. moments)
		- \rightarrow gridding over β on $\Delta\beta$ =const base that can easily be refined when/where needed $dx=$ d μ or selection of dx dependent on σ_{β}

partially refined grid or even mix of $d\mu$ (at small β) and $d\beta$ (at larger β) could be used

- from dry ice LUT, $\Delta \alpha = 30^\circ$ & $\Delta \beta = 10^\circ$ seem sufficient
	- but should be further tested for rain & melting hydrometeors

(More) Questions?

jana.mendrok@dwd.de

ulrich.blahak@dwd.de

\int **z**(β) **p**(β) sinβ dβ **≡** \int **z**(β(μ)) **p**(β(μ)) d μ ? YES!

 χ (λ ₂) $f(x)dx = \int g(y)dy$ $\times_{\mathcal{A}}$ $\gamma_n(\star)$ $x = \frac{1}{3}$ $x = \cos \beta = \mu$ $f(c_{x}) = p(x)$ or $sin \beta$ $f(x) dx = g(y) dy$ = $\frac{d(\pi \beta)}{d\beta} = -sin \beta$ $g(y) = f(x) / \frac{dy}{dx}$ $S(y) = f(x) \frac{d^2}{dy^2}$ $\frac{1}{d\cos\beta} = 1/\frac{d\cos\beta}{d\beta}$ e_{Si_x} $-s_{i}$ $p(x)$ $= \rho(x) d_{\text{cap} \beta}$ $\int g(y) dy = \int f(x) \frac{dx}{dy}$ $rac{1}{\sqrt{2}}$ $y_1 = (0, b_1 = (0, 0) = 1 = 1$
 $y_2 = (0, b_2 = (0, 9) = 0 = 0$ $\int \rho(x) d(x)$ $= f(x)/sin \beta$ dcosp

PROM Allhands Meeting – 17.-19. July 2023 \bullet \bullet \bullet \bullet \bullet s^{pp 2115} 25

Probably the most popular approach to setup particles consistent to model constraints (keeping m, D, and aspect ratio unchanged) with T-Matrix suitable shapes.

Schrom & Kumjian (2018)

- − assessed errors in polarimetric scattering properties of homogeneous reduced-density particles as proxies of branched planar crystals (both from DDA)
- found persistent underestimation of ZDR, the worse the less dense
- − provided detailed explanation for the **role of internal structure** from dipole

T-Matrix based simulations show a **consistent deficit** in terms of **polarimetric response** in the dendritic growth layer where large, "fluffy" particles prevail.

... **consistent deficit** in terms of **polarimetric response** ...

There are further explanations for lack of polarimetric signals!

FO uncertainties that can contribute include, e.g.,

- melting models
- − dielectric properties (primarily of air-ice(-water) mixtures)
- − *shape and orientation assumptions*

Shrestha et al. (2021), GMDD

... **consistent deficit** in terms of **polarimetric response** ...

There are **further explanations & reasons** for lack of polarimetric signals!

FO uncertainties that can contribute include, e.g.,

- − melting models
- − dielectric properties (primarily of air-ice(-water) mixtures)
- − shape and orientation assumptions

Regarding **model microphysics** these include, e.g.,

- − hydrometeor size distribution
- − hydrometeor class partitioning
	- lack of secondary ice
	- wet growth processes
- − mass-size relation
- − mixed-phase hydrometeors

⇾ **Can we draw robust conclusions about model microphysics from synthetic signals based on homogeneous particle approaches?**