

SPP 2115

PRISTINE

Polarimetric Radar simulations with realistic Ice and Snow properties and mulTI-frequeNcy consistency Evaluation

Jana Mendrok, Ulrich Blahak

Deutscher Wetterdienst

Motivation

- Making EMVORADO fit for external scattering data
 - Bulk scattering lookup tables from external data sources
 - Orientation averaging
- Outlook

- Approach: add polarimetry to EMVORADO, but keep existing core features & characteristics \rightarrow
 - consistent model coupling, sensor (network) modelling
 - hydrometeor property assumptions (e.g. hydrometeor morphology & melting state)
 - speed (\rightarrow bulk scattering lookup-tables)
- Added scattering model option: **T-Matrix + angular moments** \rightarrow
 - default: shape (AR), orientation (σ_{β}), melt fraction dependence from Ryzhkov et al. (2011)

liquid	rain	ice	snow	graupel, hail		
Rayleigh	oblate spheroids	oblate spheroids	oblate spheroids	oblate spheroids	shape	
-	Brandes (2002) f(deg4-in-D)	Matrosov (1996) thick plates aD^b	1.0-0.02*D 0.8 (D>10mm)	1.0-0.02*D 0.8 (D>10mm)	AR	Basic orientation
-	10°	10°	40°	40°	$\sigma_{\!eta}$	Tilted orientation
-	-	both: lin. in f _m to rain	both: lin in f _m to rain	AR: lin. in f_m between AR _{wet} =[AR ,0.8,0.48,AR] for f_m =[0,0.20,0.8,1] rain σ : lin. in f_m to rain	melting behaviour (f _m =mass melt fraction)	90°- <i>B</i>

state-of-the-art, but has its issues

SPP 2115

Polarimetric radar operator: [T-Matrix] Issues

- → Polarimetric radar forward operator state-of-the-art:
 - Assume regular-shaped, homogeneous effective density in Mie/T-Matrix calculations
 - (most?) popular: fix D_{max} , m, aspect ratio \rightarrow derive effective (reduced) density of spheroid

Polarimetric radar operator: [T-Matrix] Issues

- → Polarimetric radar forward operator state-of-the-art:
 - Assume regular-shaped, homogeneous effective density in Mie/T-Matrix calculations
 - most popular: fix D_{max} , m, aspect ratio \rightarrow derive effective (reduced) spheroid density

- → Approach: add polarimetry to EMVORADO, but keep existing core features & characteristics
 - consistent model coupling, sensor (network) modelling
 - hydrometeor property assumptions (e.g. hydrometeor morphology & melting state)
 - speed (→bulk scattering lookup-tables)
- Added scattering model option: T-Matrix + angular moments
- → Add option to use externally calculated scattering data
 - interface to scattering DB(s)

➔ Improve DWD's radar operator EMVORADO

- for (better) use in
 - model evaluation: O-B deviations due to NWP model or radar operator?
 - data assimilation: bias reduction (at the source, not post-proc)
- but keeping its capabilities
 - model consistency (esp. PSD, m-D relation)
 - calculation speed (eg. bulk scatt. lookup tables)
 - flexibility in instrument definition, e.g. frequency

Motivation

- Making EMVORADO fit for external scattering data
 - Bulk scattering lookup tables from external data sources
 - Orientation averaging
- → Outlook

- ➔ Ensure consistency
 - w/ model (PSD, m-D relation)
 - w/ EMVORADO setup (e.g. melting scheme)

ensured by file naming scheme using hash-based IDs no user interaction required (nor possible)

- Phase 1: Externally prepared model-consistent LUT
 - a) Overrule/don't apply hash ID
 - b) Simplified hash number: only consider PSD & m-D
- ➔ Phase 2ff: in-EMVORADO LUT preparation
 - Select particles from DB with consistent m-D
 - (& other constraints here's the science part)
 - Form & use equivalent hash ID

➔ Motivation

- Making EMVORADO fit for external scattering data
 - Bulk scattering lookup tables from external data sources
 - Orientation averaging
- Outlook

- So far: *Angular moments approximation* (Ryzhkov, e.g. 2011) \rightarrow
 - Derive polarimetric scattering properties of particles with Gaussian canting distribution from scattering amplitudes of "uncanted" particle
 - Pro:
 - single orientation output from T-Matrix only (minimum effort & memory)
 - "quasi-analytical" orientation weight factors (easy computation)

• Con:

- rotationally symmetric particles only (?)
- easy-to-calculate factors for elevation=0° and specific canting distributions only (oblate: random & Gaussian; prolate: horizontally aligned)

- → Modification: *Explicit orientation averaging*
 - Derive polarimetric scattering properties for a set of fixed particle orientation & integrate/average over them
 - Con:
 - more T-Matrix output (more memory; comp. effort increases only marginally when done correctly)
 - numerical integration, ie method and sampling point dependent
 - **Pro**:
 - any desired orientation distribution (flexible)
 - any radar elevation (flexible)
 - arbitrary particle shapes (flexible)
- → replace angular moments, also for in-EMVORADO SSP calculations from T-Matrix

- ➔ Parameters to provide & average:
 - Angular moments act on complex scattering amplitudes **S**
 - S are NOT additive! (ie not usable in expl. orient. avg.!)
 - currently, set of additive parameters used in PSD-integration, hydrometeor class add-up, and bulk LUT:
 - zh (=bsc-xs in h-h), zv, zvh, rrhv (=Re(nominator(RHV)), irhv (=Im(...)); kdp, ah (=ext-xs in h), adp

- (Stokes) Scattering and extinction matrices (Z and K) are an alternative representation of pol. scatt props
 - additive
 - bsc=f(Z(1:2,1:2)), nom(RHV)=f(Z(3:4,3:4)) & ext,kdp=f(K)
- → use LUT 8-parameter set in canting distrib calc & (already) as new TMat-(wrapper-)output

SPP 2115

- ➔ Numerical integration:
 - Over azimuthal (α) and canting (β) orientation angles (for oblate spheroids, γ not applicable due to rotat. symmetry w.r.t. z-axis)
 - Which quadrature scheme?
 - Trapezoidal, Simpson; Gauss-Legendre, ...?
 - Which polar angle parameter to integrate over?
 - β or cos(β)= μ ?
 - $\rightarrow \int Z * p * sin\beta d\beta = \int Z * p d\mu$
 - How many quadrature points?
 - not very critical, but β (variable) more than alpha (α)

ROM

ZDR

Deutscher Wetterdienst Wetter und Klima aus einer Hand

SPP 2115

Explicit orientation averaging

 \rightarrow Numerical integration: Over **canting** (β) orientation angles

- What about pdf-contributions from outside +/-90°?
 - for large(r) σ_{β} , norm(Gaussian pdf) over [-90°,+90°] < 1.
 - What to do?
 - nothing? (not an option since not norm-conserving)
 - renormalize? (current implementation)
 - fold? (my earlier choice)

Consider any of them "more" (physically) correct?

- ➔ From single particle tests:
 - Simpson performs bad for polar angle integration
 - Trapezoidal with $\Delta\mu\text{=const}$ performs bad
 - Gauss-Legendre better than $\Delta\beta\text{=const}$ except for small $\sigma_{\!\beta}$

Explicit orientation averaging: Choice of dx & spacing

- Deutscher Wetterdienst Wetter und Klima aus einer Hand
- > Resulting EMVORADO bulk scattering LUT (dry ice example): Diff to exp.orient.avg. high-res. reference

Explicit orientation averaging: Choice of dx & spacing

> Resulting EMVORADO bulk scattering LUT (dry ice example): Diff to exp.orient.avg. high-res. reference

- → From EMVORADO bulk LUT (dry ice example):
 - $\int d\mu$ might mitigates $\beta=0^{\circ}$ non-contribution issue of $\int sin(\beta)d\beta$
 - for $\mu(\Delta\beta=\text{const})$:
 - kinks at $\sigma_{\beta} < \Delta\beta$ removed in single particle example, but slightly larger offsets in general for same $\Delta\beta$
 - dµ clearly better at $\sigma_{\beta} < \Delta\beta$, similar performance at $\sigma_{\beta} \approx \Delta\beta$, slightly worse at $\sigma_{\beta} > \Delta\beta$
 - d μ overestimates, d β underestimates
 - for large(r) σ_{β} , any $\Delta\beta$ and dx better than **angmom** (clearly underestimates pol. moments)
 - → gridding over β on $\Delta\beta$ =const base that can easily be refined when/where needed dx=dµ or selection of dx dependent on σ_{β}

partially refined grid or even mix of $d\mu$ (at small β) and $d\beta$ (at larger β) could be used

- from dry ice LUT, $\Delta \alpha = 30^{\circ} \& \Delta \beta = 10^{\circ}$ seem sufficient
 - but should be further tested for rain & melting hydrometeors

(More) Questions?

jana.mendrok@dwd.de

ulrich.blahak@dwd.de

$\int z(\beta) p(\beta) \sin\beta d\beta \equiv \int z(\beta(\mu)) p(\beta(\mu)) d\mu?$ YES!

12(22) (x)dx = (g(y)dy)Yn(x) XA x = for x = cop = M $f(x) = p(x) \circ \sin \beta$ f(x) dx = g(y) dy $= \frac{d \cos \beta}{d \beta} = - \sin \beta$ $g(y) = f(x) / (\frac{ay}{dx})$ IP = 1/drop $S(y) = f(x) \frac{dx}{dy}$ (x) esiz - sim B p(x) / = p(x) d comp $\int g(y) dy = \int f(-) \frac{dx}{dx}$ dy si-p $\gamma_{1} = (\sigma) p_{1} = (\sigma) \sigma^{2} = 1 = 1 = \int p(s) d(\sigma) p_{2}$ $\gamma_{2} = (\sigma) p_{2} = (\sigma) q^{2} = 0 = \int p(s) d(\sigma) p_{3}$ ==f(x)/simp d cosp

PROM Allhands Meeting – 17.-19. July 2023

Probably the most popular approach to setup particles consistent to model constraints (keeping m, D, and aspect ratio unchanged) with T-Matrix suitable shapes.

Schrom & Kumjian (2018)

- assessed errors in polarimetric scattering properties of homogeneous reduced-density particles as proxies of branched planar crystals (both from DDA)
- found persistent underestimation of ZDR, the worse the less dense
- provided detailed explanation for the role of internal structure from dipole interactions

T-Matrix based simulations show a **consistent deficit** in terms of **polarimetric response** in the dendritic growth layer where large, "fluffy" particles prevail.

... consistent deficit in terms of polarimetric response ...

There are further explanations for lack of polarimetric signals!

FO uncertainties that can contribute include, e.g.,

- melting models
- dielectric properties (primarily of air-ice(-water) mixtures)
- shape and orientation assumptions

... consistent deficit in terms of polarimetric response ...

There are **further explanations & reasons** for lack of polarimetric signals!

FO uncertainties that can contribute include, e.g.,

- melting models
- dielectric properties (primarily of air-ice(-water) mixtures)
- shape and orientation assumptions

Regarding model microphysics these include, e.g.,

- hydrometeor size distribution
- hydrometeor class partitioning
 - lack of secondary ice
 - wet growth processes
- mass-size relation
- mixed-phase hydrometeors

→ Can we draw robust conclusions about model microphysics from synthetic signals based on homogeneous particle approaches?