Observing the vertical distribution of the hydrometeor mix

with ground-based scanning polarimetric cloud radar

Majid Hajipour 18th of July, 2023 PROM meeting, Kiel

Leibniz Institute for Tropospheric Research (TROPOS) Email: Hajipour@tropos.de

Hydrometeors types in cloud processes

Ice crystals:

- Originate under different ambient conditions (temperature, pressure).
- Evolution spans different environments causing more complex shapes.
- Remote sensing can provide information on shape and orientation (e.g., Myagkov et al., 2016a)

Our understanding of ice particle shape is not enough yet.

Extend main-peak approach developed by Myagkov et al. [2016a] toward detection of multiple shapes

TROPOS

ACCEPT

Analysis of the Composition of Clouds with Extended Polarization Techniques

Oct-Nov 2014, Cabauw, NL

Basic idea for extension of the shape retrieval technique

- Hydrometeor types have different fall speed.
- Received power of hydrometeor types depends on shape, size and concentration.
- Hydrometeors can be approximated by spheroids. Shape and orientation of these spheroids can be described with the socalled polarizability ratio and degree of orientation.

Modeling of ZDR and RHV as function of hydrometeor type and elevation angle

- ✓ Polarizabilty ratio: Density-weighted axis ratio varies in range [0.3, 2.3]
- ✓ Degree of orientation of symmetry axis: varies in range [-1, 1]

 Combined analysis of ZDR and RHV yields information on particle habits and orientation.

PROM meeting, Kiel 2023, hajipour@tropos.de

TROPOS

Spectrally resolved approach: Improvement of the main peak appraoch

Case studie: 3 November 2014, 20:00-20:15 UTC, Cabauw, NL

PROM meeting, Kiel 2023, hajipour@tropos.de

RHI plots of SNR, ZDR, and RHV for each of the 5 Doppler spectral parts

PROM meeting, Kiel 2023, hajipour@tropos.de

ZDR profile for all spectral parts at height = 3000m

RHV profile for all spectral parts at height = 3000m

RHV 3 NOV 2014 20:03:09-20:003:07 UTC 3000m 0.99 80 RHV part1 3 NOV 2014 20:03:09-20:003:07 UTC 3000m RHV part2 3 NOV 2014 20:03:09-20:003:07 UTC 3000m 0.98 0.99 0.99 0.97 Elevation angle ([°]) 00 00 80 80 0.98 0.98 0.96 0.97 0.97 Elevation angle (°) 00 00 02 07 () or () 0.95 0.96 0.96 0.94 0.95 Elevation a 09 0.95 0.94 0.94 0.93 0.93 0.93 0.92 40 0.92 0.92 40 40 Fastest falling part 0.91 0.91 0.91 0.9 0.9 0.9 2 -3 -2 -1 0 2 3 -3 -2 -1 0 2 3 -3 -2 -1 0 1 3 Velocity (m⁻¹s) Velocity (m⁻¹s) Velocity (m⁻¹s) RHV part4 3 NOV 2014 20:03:09-20:003:07 UTC 3000m RHV part3 3 NOV 2014 20:03:09-20:003:07 UTC 3000m RHV part5 3 NOV 2014 20:03:09-20:003:07 UTC 3000m 0.99 0.99 0.99 80 80 80 0.98 0.98 0.98 Elevation angle ([°]) 00 00 0.97 0.97 Elevation angle (°) 0000 0.97 angle (°) 0.96 0.96 0.96 0.95 0.95 Б 60 0.95 0.94 vatic 0.94 0.94 <u>∲</u> 50 0.93 0.93 0.93 0.92 40 0.92 0.92 0.91 40 40 0.91 0.91 0.9 2 -3 -2 -1 0 3 0.9 0.9 2 2 -3 -2 -1 0 3 -3 -2 -1 0 3 Velocity (m⁻¹s) Velocity (m⁻¹s) Velocity (m⁻¹s)

PROM meeting, Kiel 2023, hajipour@tropos.de

Slowest falling part

10

8000 8000 part 1 7000 ⁷⁰⁰⁰ Mie regime part 2 **Oblate** part 3 part 4 6000 6000 part 5 Height (m) 4000 3000 Height (m) 4000 (m) 3000 3000 3000 2000 2000 1000 1000 Prolate 0.5 -5 -1 Polarizability ratio Degree of orientation

3 NOV 2014 20:03:09-20:003:07 UTC

In cooperation with the German Weather Service (DWD) to implement spectrally resolved approach on C band radar to avoid Mie regime effect.

1. processing scheme is ready for the C-Band HDF datasets.

2. There are some undetermined issues with the spectral data in the DWD observations.

(planned to continue in future)

- Shape is one key parameter for identification of mixed-phase cloud processes.
- Hydrometeor shape can be observed by polarimetric cloud radar.
- Combined analysis of ZDR and RHV yields information on particle habits and orientation.
- Original main-peak approach can only retrieve one shape/orientation of the signal-dominating hydrometeor type. Sub-populations cannot be detected.
- Spectrally resolved approach:
 - 1: is able to retrieve multiple hydrometeor types in a cloud volume.
 - 2: allows to filter for Mie effects
 - 3: enables the identification of growth processes.

Thanks for your attention!

