Spectrally resolved Polarimetric Observation and Computation of Clouds - SPOCC

PROM annual meeting, Kiel, 17-19 July 2023

PI's: Patric Seifert (obs), Oswald Knoth (model)

PhD's: Junghwa Lee (model), Majid Hajipour (obs)

Partners:

- **Michael Frech (DWD)**
- **Herman Russchenberg (TU Delft)**
- **Alexander Myagkov (shape retrieval)**
- **Tempei Hashino (bin-spectral modelling)**
- **Colleagues at LIM (Maximilian Maahn, Heike Kalesse-Los et al.)**

"Toward modeling and observing the hydrometeor ratio during the onset of precipitation."

Numerical evidence that the impact of CCN and INP concentrations on mixed-phase clouds is observable with cloud radars

18. July 2023

Junghwa Lee

Member

Content

1. Motivation 2. Method 3. Result 4. Outlook

Analysis of Aerosol-Related Contrasts in Cloud-Radar Reflectivities Observed in Stratiform Supercooled Mixed-Phase Clouds

The motivation of advanced microphysics modeling: Spectral-bin model → Advanced Microphysical Prediction System (AMPS; Hashino et al. (2020), JAS)

- Hydrometeor shapes can be distinguishable
- Modeling can suggest the possible pathway of precipitating the evolution of hydrometeors

The spectral-bin microphysics model

→ Advanced Microphysical Prediction System (AMPS; Hashino and Tripoli (2007), JAS)

Particle Property Variables (PPVs) in AMPS: Diagnosis of Habit

Radar forward simulator (PAMTRA: Mech et al., 2020, GMD)

The impact of CCN and INP perturbations on mixed-phase clouds with AMPS and Radar forward simulator (PAMTRA)

■ Simulations with AMPS for the same thermodynamical condition of stratiform supercooled liquid cloud, but strongly different aerosol conditions

Radar Reflectivity factor from AMPS-PAMTRA (Ka-band)

Simulation results of AMPS

- INP concentration 1 \rightarrow \downarrow D & \uparrow N → **Z** ↑
- CCN concentration ↑ \rightarrow slightly \uparrow D & \downarrow N
	- → **Similar Z**

Z is not solely influenced by the Number Concentration

Simulation results of AMPS

- CCN concentration ↑ \rightarrow 1 Liquid water mass \rightarrow suppresses precipitation
- INP concentration 1 $\rightarrow \downarrow$ Liquid water mass

Simulation results of AMPS

▪ CCN concentration ↑ \rightarrow 1 Ice water mass

▪ INP concentration ↑ \rightarrow 1 Ice water mass

Simulation results of AMPS

- CCN concentration ↑ \rightarrow slightly \uparrow aggregation
	-
	- $\rightarrow \downarrow$ Riming

Reduction in the size of supercooled liquid particles available for riming (Borys and Lowenthal, 2003, GRL)

- INP concentration \uparrow
	- $\rightarrow \uparrow$ Aggregation and \uparrow Crystal
	- $\rightarrow \downarrow$ Riming

Reduction in the number of supercooled liquid particles available for riming

Conclusion

- CCN and INP concentrations play a vital role in determining the shape of ice particles and influencing cloud microphysics.
- The efficiency of the riming process decreases, while the aggregation process increases, with higher concentrations of INP and CCN..
- Higher INP concentrations result in smaller effective diameters, while increased CCN concentrations lead to a slight increase in size.
- We successfully coupled the AMPS model with PAMTRA to obtain radar-related variables.
- An increase in the INP concentration leads to an increase in **Z**. (Zhang et al., 2018 and Radenz et al., 2021)
- Through modeling and the radar forward simulator, we confirmed that Z is influenced by factors beyond just Number Conc.

Thank you!

