FRAGILE- EXPLORING THE ROLE OF FRAGMENTATION OF ICE PARTICLES BY LAB STUDY OF ICE-ICE COLLISIONS

PROM Meeting, 24.07.2024

IGL

zu Kö

Sudha Yadav, Lilly Metten, Pierre Grzegorczyk, Alexander Theis, Subir K. Mitra, Miklós Szakáll JGU, Mainz

PROJECT OBJECTIVES

- Collision induced fragmentation in the M-CR (Mainz cold room)
- Temperature dependence of the number of fragments
- Fragmentation without collision in M-WT

Graupel Generation Setup (GEORG)

Graupel generated at -15°C

PROGRESS SINCE LAST MEETING

- Publication: Grzegorczyk, P., Yadav, S., Zanger, F., Theis, A., Mitra, S. K., Borrmann, S., and Szakáll, M.: Fragmentation of ice particles: laboratory experiments on graupel–graupel and graupel–snowflake collisions, Atmos. Chem. Phys., 23, 13505–13521, https://doi.org/10.5194/acp-23-13505-2023
- Laminarization of the supercooled droplet flux inside GEORG lower LWC (0.4 g/m³) so better repeatability in graupel's size (2-4mm) and density (0.2-0.6 g/m³)

- Making the experimental collision setup more robust
- Characterization of liquid water content at graupel's location
- Graupel size and density characterization at -15 °C and -7°C
- Collisions between ice particles with different densities to study the effect of density on particle fragility.

COLLISIONS

Collision pair	Temperature (°C)	Falling particle diameter (mm)	Falling particle density (g·cm ⁻³)	Fixed particle diameter (mm)	Fixed particle density (g·cm ⁻³)
Gr-gr	-15	2.45	0.458	2.45	0.558
Gr-ice sphere	-15	5	0.9	2.45	0.558
Ice-ice sphere	-15 & -5	7	0.9	5	0.9
Ice-ice sphere	-15 & -5	5	0.9	5	0.9
Multiple collision gr-ice sphere	-7	5	0.9	2.45	0.558

Multiple collisions, ice on graupel – No more fragments after 4 collisions

IGL

- Supersaturation was too high
- Mixing chamber required for controlled supersaturation
- Adiabatic and Isobaric mixture of cold dry and warm moist air

zu Köl

IG

- Shown points: Means of temperature and saturation logs (in respect to ice) in the growth chamber
- Errors: standard deviation of said data logs
- Errors big because of long growth times (~20 minutes)

Mean growth regime of Ice Crystals

- Growth regime:
- T = (-14.9 ± 2.4) °C
- Sat(ice) = (121.3 ± 11.3) %
- Dendrite crystal, experiment #2

- T = (-17.5 ± 0.6) °C
- Sat(ice) = (143.0 ± 14.9) %
- Sector plates and dendrite on graupel, experiment #5

SUMMARY AND OUTLOOK

- Number of fragments increases with the CKE.
- Collisions between lowest density ice particles, did not produce more than 20 fragments but still a bit more than other SIP (droplet freezing - Keinert et al., 2020). This was consistent across a range of kinetic energy (10⁻⁷ to 2x10⁻⁵ J).
- Collision between lower density particles, being more fragile, produced a greater number of fragments than higher density ice particles.
- Generating different crystal habits in mixing chamber
- Temperature dependence of number of fragments during collision

	Т (°С)	LWC (gm ⁻³)	Growth time (min)	Diameter (mm)	Density (g cm- ³)
Turbulent	-10	3.46	3	2.43	0.49
	-10	3.50	7	4.47	0.78
	-15	2.32	3	2.24	0.33
	-15	2.20	6	3.51	0.51
	-20	0.71	7	2.05	0.25
Laminar	-15	0.41	10	2.95	0.26
	-15	0.41	15	3.65	0.29
	-7	0.37	5	1.63	0.5
	-7	0.37	10	2.45	0.46

LIQUID WATER CONTENT

Pressure (in bar)	Avg LWC (g/m3)	Std LWC (g/m3)
0.1	0.241	0.035
0.2	0.368	0.028
0.3	0.652	0.053
0.4	1.163	0.096
0.5	1.631	0.063

13

GRAUPEL SIZE & DENSITY CHARACTERIZATION

Temperature (°C)	Average LWC (gm–3)	Growth time (mins)	Number of graupels sampled	Avg Diameter (mm)	Avg Density without epoxy (gcm–3)	Avg Density with epoxy (gcm–3)
-7 ± 1.5	0.368	5	12	1.626 ± 0.185	0.499 ± 0.021	0.843 ± 0.135
-7 ± 1.5	0.368	10	15	2.450 ± 0.287	0.458 ± 0.023	0.558 ± 0.0470
-15 ± 1.5	1.631	3	10	2.432 ± 0.213	-	0.287 ± 0.056
-15 ± 1.5	1.631	9	10	3.862 ± 0.538	-	0.467 ± 0.057

- Latest improvement: 7 ice rods instead of only 1, each half in length
- Saturation with single rod was not stable enough over time
- Increase in effective surface area for vapor deposition inside tubes by a factor of 4.43
- Increases flow rates to reduce growth time
- In the coming days: Insulation of the setup from temperature oscillation of the cold

PROM Meeting, 24.07.2024

chamber, growth chamber regime is dependent on this