Combined Remote-Sensing, In-Situ and Modelling of Cloud Microphysical Perturbations in Supercooled Stratus Clouds

PolarCAP

Willi Schimmel¹, Fabian Senf¹, Kevin Ohneiser¹, Patric Seifert¹

Jan Henneberger², Fabiola Ramelli², Christopher Fuchs², Anna Miller², Nadja Omanovic², Huiying Zhang², Ulrike Lohmann²

¹ Leibniz Insitute for Tropospheric Research (TROPOS), Leipzig, Germany ² Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland

PROM All-hands Meeting – 26.07.2024

PolarCAP and CLOUDLAB

By utilizing cloud **seeding**, it is possible to disentangle the contributions of **primary** and **secondary** ice **formation** to the glaciation process of **supercooled** stratiform clouds from **spectral bin modelling** and **observations**.

-10...0 °C

Focus Of This Presentation

Remote-Sensing: cloud radar MIRA35

Source: K. Ohneiser (adapted)

In-Situ: holographic imager HOLIMO

Source: C. Fuchs (adapted)

TBS ... Tethered Balloon System

Model Domain: spectral bin microphysics COSMO-SPECS

Source: R. Schrödner (adapted)

Remote-Sensing & In-Situ Observations

Profiles at Rapier Platz: 25. January 2023

- Bise cloud situation
- three seeding events conducted
- reflectivity 10 25dBZ above background → *ice production*
- up-/downdrafts visible in mean Doppler velocity
- LDR ~ -15dB and Z_e > -20dBZ
 →columnar growth
- peak ice crystal concentration ~2000L⁻¹
- HOLIMO shows (hollow) columns

Model Domain

COSMO-SPECS Model Domain: Eriswil

400m - Resolution

dims	N cells	resolution	size	
x (lon)	50	360 m	18 000 m	
y (lat)	40	400 m	16 000 m	
z (hgt)	100	9 m – 520 m	900 m – 21500 m	
Runtime 3 h simulation: 4.5 h on 1 node on Levante (128p)				

100m - Resolution

dim	N cells	resolution	size
x (lon)	200	90 m	18 000 m
y (lat)	160	100 m	16 000 m
z (hgt)	100	9 m – 520 m	900 m – 21500 m

Runtime 3 h simulation: 12 d on Gauss5 (176p)

COSMO-SPECS-Flare Setup

COSMO-SPECS-Flare **adds** and **artificial CCN** and **INP source** to an individual grid cell.

- two switches control the background concentration of CCN and INP
- two switches control the seeding, which adds CCN and INP

Parameter			Values
Background concentration:			
INP (fixed value) in [L ⁻¹]	::	N^{INP}	{500}
<i>CCN (varies, 2 modes)</i> in [cm ⁻³]	::	N_1^{CCN} , N_2^{CCN}	{1035, 600, 200}, {40.5, 20.5, 2.5}
Seeding concentration:			
<i>INP</i> (varies) in [L ⁻¹ s ⁻¹]	::	$N_{\rm flare}^{\rm INP}$	{None, 10 ¹⁰ , 10 ¹⁶ }
CCN in [cm ⁻³]	::	$N_{\rm flare}^{\rm CCN}$	{None}
\Rightarrow Number of model runs:			27

Seeding Experiment: 25. January 2023

Parameter	CLOUDLAB Seeding	Model Seeding	
Seeding Mission	SM58, SM59, SM60	-	
Distance [m]	2000, 3000, 2500	2500	
Altitude [m] MSL	1300	1350	
Flight Speed [ms ⁻¹]	5.2	0.0	
Flare Burning Time [s]	340	160	
Restart Interval [s]	-	1420	

Source: Jan Henneberger

COSMO-SPECS-FLARE Results (1h spin-up)

COSMO-SPECS-flare Model vs. Observations

Profiles at Rapier Platz: 25. January 2023

- cloud top height matches well, cloud base height 100m lower than radar obs.
- flare emissions = $10^{16} L^{-1} s^{-1}$ (for 160s)
- large spread in frozen mass
- model ice deposition much slower than obs.

Bulk Time Series – Model Ensembles vs. HOLIMO

10

TROPOS

Spectra – Model Ensembles vs. HOLIMO

Varying background CCN:

- HOLIMO detection limit at 6µm (liquid droplets), 25µm (ice crystal)
- better fit using lower initial concentrations

Varying seeding INP:

- large amounts of flare emissions required to resemble amplitude of HOLIMO measurements
- model ice crystal diameter smaller by a factor of ~2

Size information from HOLIMO :

- Major axis length
- Minor axis length
- Equivalent size
- Area

-

Spectra – Model Ensembles vs. HOLIMO

Varying background CCN:

- HOLIMO detection limit at 6µm (liquid droplets), 25µm (ice crystal)
- better fit using lower initial concentrations

Varying seeding INP:

- large amounts of flare emissions required to resemble amplitude of HOLIMO measurements
- model ice crystal diameter smaller by a factor of ~2

Size information from HOLIMO :

- Major axis length
- Minor axis length
- Equivalent size
- Area

-

Summary

<mark>So far:</mark>

- ensemble simulations were carried out, varying in number concentration for initial CCN distribution and flare INP emission rates
- macrophysical properties in good agreement with observations (cloud base/top)
- microphysical properties in good agreement (number conc. & diameters)

<mark>Open Tasks:</mark>

- investigate ice growth process in specs (vary shape assumption)
- implement moving drone
- implement AgI parameterization [Omanovic et al. 2024 (preprint), Marcolli et al. 2016, DeMott 1995]
- run/analyze 100m resolution model ensembles
- utilize Cloudnet-VOODOO retrieval \rightarrow compare LWC/IWC & effective radii from retrievals to model
- Forward Operator PAMTRA [Mech et al. 2020]
- Lagrangian view, using cloud tracking tool tobac [Heikenfeld et al. 2019]
- (run ICON-SPECS)

Closure Study

Forward Simulator

Using PAMTRA [Mech et al. 2020, GMD]

Model Domain

- Liquid/Ice Mixing Ratios

Liquid/Ice Number Concentrations

In-Situ Domain

- INP, CCN Distrubutions
- Meteorological Variables

Remote-Sensing Domain

Work in Progress

- Reflectivity Factor
- Polarimetric Variables

Retrievals

Using Cloudnet [Illingworth et al. 2007 BAMS, Tukiainen et al. 2020 JOSS]

COSMO-SPECS

Spectral Bin Microphysics Model

16

COSMO-SPECS-Flare Setup

- COSMO-SPECS-Flare **adds** and **artificial CCN** and **INP source** to an individual grid cell
- Two switches control the background concentration of **CCN (varies)** and **INP (fixed)**
- Two switches control the artificial seeding, which adds CCN (switched off) and INP (varies)

Parameter

400m horizontal resolution

	dims	N cells	resolution	size
	x (lon)	50	360 m	18 000 m
	y (lat)	40	400 m	16 000 m
	z (hgt)	100	9 m – 520 m	900 m – 21500 m
		Values		
	:: <i>N</i> ^{INP}	{500}		
=100nm	$n :: N_1^{CCN}$	{1035, 60	0, 200}	
= 350nn	$n :: N_2^{CCN}$	{40.5, 20.	5, 2.5}	
	IND			

Issue with Low Level Liquid Clouds and Cloudnet

Observations: LACROS

The holographic imager: HOLIMO

Capabilities:

- Cloud droplets $\geq 6 \ \mu m$
- ice crystal \geq 35 µm
- Max sampling volume: 22.5 cm³ * 40 Hz = 0.9 l/s
- Cloud droplet and ice crystal
 - Number concentrations
 - Content
 - Size distributions

Source: Christopher Fuchs (ETH)

ETH zürich

Supporting studies in the SPP-PROM network

Issue with Low Level Liquid Clouds and Cloudnet

Importance of Ice/Mixed Phase Pecipitation

[Mülmenstädt et al., GRL, 2015]

PolarCAP and CLOUDLAB

Supercooled stratus clouds as natural laboratory

Glaciogenic seeding

Low stratus clouds

Seeding with a UAV

Source: jan.henneberger@env.ethz.ch

COSMO-SPECS

Spectral Bin Microphysics Model

- driving model: COSMO v4.21 [Schättler et al., 2013]
- SPECS developed at TROPOS [Simmel et al., 2002]
- SPECS replaces 2-moment bulk microphysics of COMSO
- Liquid and frozen condensates distributions evolve freely

Number of bins $= 66$	bin	size	
aerosol	1 - 30	1.0 nm – 1015 nm	
droplets / ice crystals	31 - 50	1.015 μm – 102 μm	
rain / snow / (precip.)	50 - 66	0.102 mm – 4.2 mm	

TROPOS

Preliminary Results

COSMO-SPECS Model Domain: Eriswil

400m - Resolution				
dims	N cells	resolution	size	
x (lon)	50	360 m	18 000 m	
y (lat)	40	400 m	16 000 m	
z (hgt)	100	9 m – 520 m	900 m – 21500 m	

Runtime 3 h simulation: 4.5 h on 1 node on Levante (128p)

TARGET: 100m - Resolution

dim	N cells	resolution	size
x (lon)	200	90 m	18 000 m
y (lat)	160	100 m	16 000 m
z (hgt)	100	9 m – 520 m	900 m – 21500 m

Runtime 3 h simulation: 12 d on Gauss5 (176p)

Observations: CLOUDLAB

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Eidgenössisches Departement des Innern EDI Bundesamt für Meteorologie und Klimatologie MeteoSchweiz

MeteoSchweiz

TROPOS

28

Ice crystal shape size

Size information from HOLIMO:

- Major axis length
- Minor axis length
- Equivalent size
- <u>Area</u>

Issue with Low Level Liquid Clouds and Cloudnet

COSMO-SPECS-FLARE

Model vs. Observations

Profiles at Rapier Platz: 25. January 2023

Flare: low_res = $8 \cdot 10^{12} \text{ s}^{-1}$ (160s), high_res = $8 \cdot 10^{14} \text{ s}^{-1}$ (340s)

- Large spread in low_res frozen mass despite shorter flare burning time
- high_res cloud base 200m lower than radar observations
- MWR-LWP 10x (2x) higher comparted to low (high) res. simulation

