

All Hands Meeting - POLICE

Armin Blanke October 15, 2020

Institute of Geosciences Meteorology Section

- 1. Improve our understanding of the origin of $K_{\text{DP}}\text{-}\text{bands}$
- 2. Development of a radar polarimetry algorithm to distinguish between aggregation and riming
- 3. Evaluation of ice microphysical retrievals with observations

Olympic Mountains Ground Validation Experiment (OLYMPEX)

Figure 1: Map of observation network. Radars are shown as squares.

Doppler on Wheels (DOW)

- Mobile X-band radar
- Frequency: 9.4 GHz (Wavelength: ~3.2 cm)
- Range: 59.96 km
- Gate length: 75 m

Figure 2: Mobile X-band radar (Doppler on Wheels).

Scan strategy (DOW)

RHIs in a 22 degree azimuthal sector over a time period of 3:50 minutes (\sim 10 seconds per azimuth scan) Elevations: 0 to 71 degrees

Figure 3: Scan strategy: azimuth and elevation each against time.

UND Citation aircraft

 Science aircraft University of North Dakota's (UND) Cessna Citation II equipped with an advanced in-situ cloud payload which provides in-situ microphysics

Citation	King Hot Wire Probe	Liquid water, 0.02–5.0 g m ⁻³
	CloudDroplet Probe (CDP)	Cloud droplet size distribution, 2–50 µm range
	2D-S	Particle images, 10 μm–1280 μm
	HVPS-3 (2 units)	Particle images, 150 µm–1.92 cm; One horizontal and one vertically-oriented instrument
	CPI	Cloud particle imager; particle imagery at 2.3 m resolution
	CSI	Cloud water content, 0.02 - ~1.0 g m ⁻³
	2DC	Particle images, 30–960 µm
	Nevzorov	Total water content, 0.02 – ~1.5 g m ⁻³
	Rosemount icing probe (RICE)	Supercooled water detection

Table 1: Measuring instruments of the Citation aircraft.

Citation flight path

21 flight missions in total Example flight path trajectory:

Figure 4: Flight path of the Citation aircraft on 13.12.2015. Location of the DOW red dot. Two flight transects (red and blue) with matched space-time coordinates.

Co-location DOW und Citation

RHI-QVP (Allabakash et al. 2019)

- Method for displaying and processing RHI scans in a time-height format
- Averaging of polarimetric radar variables from several elevation angles within a certain grid spacing at a fixed azimuth angle

Figure 6: Schematic representation of the R-QVP strategy.

- 1. Averaging of data within a specified sector in range and azimuth using multiple elevation angles
- 2. Predefined window at a certain distance with arbitrary length
- 3. Horizontal averaging via height bins (vertical resolution of 75 m)
- 4. Extract one vertical column per time span
- 5. The vertical columns are combined and presented in the sector R-QVP
- 6. Thresholds: $\rho_{hv} > 0.7$ and $60 \, dBz > Z_H > 0 \, dBz$

Plan view illustration sector R-QVP

Figure 7: Plan view of a Sector R-QVP.

Sector R-QVPs: Polarimetric variables

Figure 8: Sector R-QVP of Z_H on 13.12.2015. The black lines show isotherms of the ERA5 reanalysis at the DOW site.

Sector R-QVPs: Polarimetric variables

Figure 9: Sector R-QVP of Z_{DR} on 13.12.2015. The black lines show isotherms of the ERA5 reanalysis at the DOW site.

Sector R-QVPs: Polarimetric variables

Figure 10: Sector R-QVP of K_{DP} on 13.12.2015. The black lines show isotherms of the ERA5 reanalysis at the DOW site.

Cloud Particle Imager images

- first DOW overpass conducted on 13 December 2015 confirmed clear signs of riming
- During the second overpass no evidence of riming is observed

Figure 11: Hydrometeors recorded by the CPI: rimed crystals (16:13 UTC) and unrimed crystals (18:45 UTC).

Further work

Figure 12: Polarimetric ice microphysical retrieval example (Trömel et al. 2019).

 use state-of-the art polarimetric ice microphysical retrievals for comparison with co-located in-situ measurements (applied to sector R-QVPs)

Figure 13: Riming detected in QVPs (Figure adapted from Ryzhkov et al. 2016).

- Detection of polarimetric fingerprints (riming) in R-QVPs
- Development of radar algorithms that distinguish between aggregation and riming with a combination of multiple indicators sided with in-situ observations

References

- S Allabakash et al. "X-Band Dual-Polarization Radar Observations of Snow Growth Processes of a Severe Winter Storm: Case of 12 December 2013 in South Korea". In: *Journal of Atmospheric and Oceanic Technology* 36.7 (2019), pp. 1217–1235.
- Robert A Houze Jr et al. "The olympic mountains experiment (OLYMPEX)". In: Bulletin of the American Meteorological Society 98.10 (2017), pp. 2167–2188.

- Alexander Ryzhkov et al. "Quasi-vertical profiles—A new way to look at polarimetric radar data". In: *Journal of Atmospheric and Oceanic Technology* 33.3 (2016), pp. 551–562.
- Silke Trömel et al. "Polarimetric radar variables in the layers of melting and dendritic growth at X band—implications for a nowcasting strategy in stratiform rain". In: *Journal of Applied Meteorology and Climatology* 58.11 (2019), pp. 2497–2522.

All Hands Meeting - POLICE

Armin Blanke October 15, 2020

Institute of Geosciences Meteorology Section