

Rheinische -riedrich-Wilhelms-Universität Bonn

Climate model PArameterizations informed by RAdar (PARA)

PHD(Uni Bonn): Nikolaos Papaevangelou PHD(Uni Leipzig): Sabine Hörnig Pls: Silke Trömel, Clemens Simmer, Johannes Quaas PROM Programme

Institute for Geosciences, Department of Meteorology, Uni Bonn

Overall motivation of PARA

The overall goal of PARA is to evaluate and improve the representation of microphysical processes in ICON-GCM exploiting high-resolved polarimetric radar observations.

ICON GCM ~ 150km

Radars \sim 0.15 – 1 Km $_2$

Work Programme

- The project focuses on the following processes:
- Spatial sub-grid scale variability of cloud ice
 Aggregation
 Melting of precipitation
 Evaporation

<u>Note</u>: The smallest size particle which is assigned to snow in ICON model is 100µm.

Spatial sub-grid scale variability of cloud ice (Uni Bonn)

- Our goal is to provide the mean value and variance of:
- Ice Water Content IWC (Ice + Snow + Overall)
- *****Total number Concentration N_t (Ice + Snow + Overall)
- **\therefore** Mean Volume Diameter D_m (Ice + Snow + Overall)

as a function of height, using polarimetric radar measurements and applying the most recent ice microphysical retrievals by Ryzhkov et al. (2018) and Bukovcic et al. (2020).

Data and Methodology

Data

Polarimetric radar data from the:

- ➢ Radar network of DWD with C − band weather radars.
- ➢ BoXPol X − band radar
- ►JuXPol X band radar

Methodology - Ice microphysical retrievals

This study uses the most recent ice microphysical retrievals by Ryzhkov et al. (2018) and Bukovcic et al. (2020).

1)
$$D_m(mm) = = -0.1 + 2.0(\frac{Z_{DP}}{K_{DP}\lambda})^{1/2}$$

2) $IWC(\frac{gr}{m^3}) = 4 \times 10^{-3} \frac{K_{DP}\lambda}{1-Zdr^{-1}}$
3) $\log(N_t)(\frac{1}{L}) = 0.1Z - 2\log(0.2D_m^2) - 1.33$
Ryzhkov et al. (2018)
 $D_m(mm) = 0.7(\frac{Z}{K_{DP}\lambda})^{1/3}$
 $IWC(\frac{gr}{m^3}) = 0.3(K_{DP}\lambda)^{0.66}Z^{0.28}$
 $\log(N_t)(\frac{1}{L}) = 0.1Z - 2\log(0.2D_m^2) - 1.33$

Note: σ= 0 and a/b=0.65

Methodology – Statistical Errors

Estimation of the statistical errors of Z_{DR} , Z_H and K_{DP} following **Ryzhkov and Zrnic (2018)** and **Vulpiani et al. (2012).**

Using the Gaussian Error propagation is estimated the resulting error in $IWC(K_{DP}, Z)$ and $IWC(Z_{DR}, K_{DP})$ for each radar bin.

- ➢Averaging is needed in order to be reduced the statistical error of the retrievals.
- This study uses the Quasi Vertical Profiles(QVP) methodology and the QVP methodology applied in azimuthal sectors.

Methodology – Quasi Vertical Profiles (QVPs)

- Low statistical errors.
- Coarse resolution which cannot provide alone the sub-grid scale ice variability.

Fig. 2) Quasi Vertical Profile methodology

Methodology – QVPs applied in azimuthal sectors

- + Provides the horizontal variability in azimuths.
- Higher statistical errors.

Challenge:

How?

The appropriate choice of the sector size.

Comparisons between the variability of IWC (of both formulas) in azimuths with the mean error of IWC for different sector sizes

Stdev(IWC) vs Error(IWC)

Fig. 3) Variability and error with 10 increasing sector size.

Methodology - Ice and snow component of IWC, D_m , N_t

Fig. 4) QVPs of Total Concentration for the rain event 12/04/2013 using BoXPol radar and elevation angle 18 degrees.

Results (snow component)

Fig. 5) Height profiles of IWC(snow), Nt(snow) and Dm(snow) for the rain events 12/04/2013, 07/10/2014 and 16/11/2014 using BoXPol radar and elevation angle 18 degrees.

Results (ice component)

Fig. 6) Height profiles of IWC(ice), Nt(ice) and Dm(ice) for the rain events 12/04/2013, 07/10/2014 and 16/11/2014 using BoXPol radar and elevation angle 18 degrees.

Summary

Future work

More cases.

5

Study of the snow formation with aggregation