PROM-IMPRINT:

Understanding Ice Microphysical Processes by combining multi-frequency and spectral Radar polarImetry aNd super-parTicle modelling

Leonie von Terzi, Stefan Kneifel

Jan-Niklas Welss, Axel Seifert, Christoph Siewert

Importance of Dendritic Growth Layer (DC

- First region with enhanced aggregation:
 - Differential scattering at different wavelengths (λ)
 - $DWR_{\lambda_{1}\lambda_{2}} = Ze_{\lambda g_{1}} Ze_{\lambda_{2}}$
 - DWR is indication of aggregation

- Growth of oblate (plate-like) particles:
 - Enhanced ZDR and KDP layers around -15°C

How are aggregation and ice crystal growth related? $\frac{1}{2}$ -15

→ Statistical analysis of DGL combining multi-frequency^b -10 Doppler radar observations with polarimetric Doppler ⁻⁵ cloud radar observations

Dias-Neto et al. 2019 ESSD, Ori et al. 2020 QJRMS

How are aggregation and growth of dendritic particles related?

 \rightarrow Classify dataset by maximum DWR within DGL (size of aggregates)

How are aggregation and growth of dendritic particles related?

 \rightarrow Classify dataset by maximum DWR within DGL (size of aggregates)

- Why is KDP increasing, aggregation should consume ice particles?
- \rightarrow Hypothesis: Fragmentation during aggregation process
 - Takahashi et al. 1993,1995: fragile arms growing on ice spheres were broken of during collision
- Hypothesis can be studied with Monte-Carlo particle model McSnow, Laboratory or in-

- Seeding particles from above (e.g. Moisseev et al. 2015; Griffin et al. 2018)?
- Particles formed locally through SIP?
- → McSnow simulations with habit prediction (McSnow: Monte-Carlo particle model)

- →McSnow simulations with habit prediction
- \rightarrow Particles grow through deposition while sedimenting

- Particles nucleated at T<-21°C do not grow into plates
- Particles nucleated at -16°C grow most efficiently into plates
- → Most likely: particles are generated locally in DGL

→McSnow simulations with habit prediction

 \rightarrow Particles grow through deposition while sedimenting

What does crystal growth look like in radar space? \rightarrow forward simulation

- \rightarrow McSnow simulations with habit prediction
- \rightarrow Particles grow through deposition while sedimenting
- \rightarrow Single particle scattering calculation with T-matrix

PROM-meeting 25.07.2022, Leonie von Terzi, Iterzi@unikoeln de

relative Humidity [%]

-10

5000

4000 Height [a] 3000 2000

1000

— т - RH

Conclusions

- Aggregation is linked to
 - -Increase of ice crystal size (sZDRmax)
 - -Increase of ice crystals concentration (KDP)
- Why does crystal concentration increase? Aggregation should decrease concentration!
- McSnow simulations revealed

-Plate-like particles have to be nucleated within DGL

• Can fragmentation explain the observed radar signals?

→FRAGILE: Laboratory studies

 \rightarrow McSnow simulations with habit prediction

 \rightarrow Particles grow through deposition while sedimenting

How important are processes happening within DGL?

- Previous studies:
 - correlation between cloud-top temperature (CTT) and KDP/ZDR
 - Increase of ZDR and KDP due to seeding particles from above
- Classify by CTT

How important are processes happening within DGL?

→Classify dataset by CTT

- Slightly larger crystals for colder CTT
- Concentration in DGL of crystals slightly larger for colder CTT
- \rightarrow Overall: much less dependent on CTT than on DWR
- \rightarrow Processes in DGL seem to be important

