## Attribution of riming and aggregation to the evolution of hydrometeor shape and orientation in mixed-phase clouds with SLDR-mode scanning cloud radar

<u>Audrey Teisseire</u>, Teresa Vogl, Patric Seifert, Heike Kalesse-Los, Willi Schimmel, Martin Radenz

SLDR...slanted linear depolarization ratio



# PROM All-hands meeting 25-26 July 2022











Microphysical growth processes in mixed-phase clouds

## Riming process :



Dendritic layer



Liquid water layer





Riming

 $\rightarrow$  collision and accretion of **supercooled liquid water** onto ice particles

Spherical particle High density → falling fast



Microphysical growth processes in mixed-phase clouds

## Aggregation process :



Dendritic layer



Snow flake layer

## Aggregation

 $\rightarrow$  Aggregation occurs when several ice particles stick together, forming one larger particle

Spherical particle Low density → falling slowly





#### How to differentiate riming and aggregation?



#### How to discriminate the manifold hydrometeor habits in clouds?



#### Shape estimation of particles

Exploit the unique relationship between: SLDR, pspheroidal pol. scattering model is suitable to simula (cross-correlation coefficient), antenna elevationelation between SLDR and pcx as function of elev and



→ Compare observations of elevation angle dependency of SLDR and p<sub>cx</sub> to the scatt. model simulations to infer best-fitting hydrometeor shape



#### New method to estimate the vertical distribution of particle shape

#### Combination of spheroidal scattering model and scanning SLDR cloud radar observations



#### Illustration of retrieval : SLDR(90°) = -32 dB and SLDR(150°) = -11dB

 $\rightarrow$  We will illustrate the new method with typical hypothetic dendritic values of SLDR at 90 and 150 degree elevation angle, based on a real case study.



Illustration of retrieval : SLDR(90°) = -32 dB and SLDR(150°) = -11dB

Modeled SLDR dependency on shape and orientation of particles at 90 and 150 degrees elevation angle. 150°



#### Illustration of retrieval : SLDR(90°) = -32 dB and SLDR(150°) = -11dB



#### Case study, 26 August 2019, 06:30 UTC, Punta Arenas, Chile

RHI-scan of SLDR and  $\rho_{cx}$  during the DACAPO-PESO campaign



#### Case study, 26 August 2019, 06:30 UTC, Punta Arenas, Chile



#### Summary

→ Scanning cloud Radar in SLDR-mode is a new technology which is highly sensitive to determine the shape of particles

- → The new approach allows to obtain the vertical gradient of polarizability ratio, describing the particle shape, which contains certain characteristic features for either riming or aggregation processes :
  - ♦ Aggregation → progressive process: Particles will change slowly from oblate/prolate to spherical particles
  - ♦ Riming → spontaneaous/abrupt process: Particles will change quickly from oblate/prolate to spherical particles, at the contact with supercooled liquid droplets
- → The VDPS method is validated and promising combined with the new cor finance MIRA-35 VDPS: Vertical Distribution of Particle Shape

MIRA-35 VDPS: Vertical Distribution of Particle Shape  $\rightarrow$  Audrey is on PICNICC break (parental leave)  $\rightarrow$  Phd Project is extended until 0

Study in preparation for PROM special issue:

https://acp.copernicus.org/articles/special\_issue1154.html

Title: "Determination of the vertical distribution of particle shape in a cloud using a SLDR-mode 35GHz scanning cloud radar"
→ Finished. To be submitted by August 2021



TROPOS