Investigation of the Initiation of Convection and the Evolution of Precipitation using Simulations and Polarimetric Radar Observations at C- and Ka-Band

Martin Hagen¹, Tobias Zinner² Florian Ewald¹, Silke Groß¹, Christoph Knote², Bernhard Mayer²

 ¹ Institute for Atmospheric Physics, DLR Oberpfaffenhofen, Germany
 ² Meteorological Institute, University of Munich (LMU), Germany

Understanding Precipitation Initiation in Mixed Phase Clouds

Key Questions:

- when does precipitation initiation take place?
- when will ice be formed?
- how is precipitation initiation related to ice formation?

Understanding Precipitation Initiation in Mixed Phase Clouds

Answer from Radar:

- dual-polarization hydrometeor classification
- reflectivity gives water / ice content
- ZDR, KDP, ... tells about particle habit

Limitation:

- C-band radar is not sensitive enough for small cloud particles
- cloud radar (Ka- or W-band) is limited in range and suffers from attenuation
- both can derive only partly microphysical quantities or particle habits

Understanding Precipitation Initiation in Mixed Phase Clouds

Answer from Numerical Models:

- 3D particle phase and properties available
- 3D flow available
- particle trajectories (= history) available

Limitation:

- choice of microphysical scheme crucial (bulk > 1/2-moment > spectral bin)
- spatial resolution dependent (high resolution O(100m) required for convection)

Work Package Structure

Martin Hagen > PROM kick-off > Bonn > 17/18 October 2018

Convective Precipitation in Munich Region

Munich best suited for studies of convective precipitation

frequency of radar reflectivity > 36 dBZ (fraction of time during AMJJA 2012-2016)

average moving direction for convective storm cells (for AMJJA 2012-2016)

BSc M. Laufmann, 2017

WP 1: Coordinated Radar Observations

WP 1.1: Scan strategy

WP 1.2: Measurements

LUDWIG-MAXIMILIANS UNIVERSITÄT MÜNCHEN

DLR

WP 3.1A: Hydrometeor Classification

- Fuzzy logic hydrometeor classification
- → Initiation of convection

 \rightarrow transition form clear-air echoes to cloud/precipitation

Coordinated measurements Poldirad – MIRA35

- C-band weather radar
 (5.5 GHz, 250 kW)
- operated at DLR Oberpfaffenhofen
- ➤ 4.5 m antenna 1° beam-width
- range res. 150 m, max 120 km
- full polarimetric (STAR and AltHV) (ZDR, LDR, KDP, rho_{HV})

- Ka-band cloud radar (scanning) (36 GHz, 30 kW)
- operated at LMU Munich city
- 1 m antenna 0.6° beam-width
- range res. 30(60) m, max 15(30) km
- linear depolarization ratio LDR

STAR: simultaneous transmit and receive AltHV: alternate transmit and receive horizontal and vertica

Martin Hagen > PROM kick-off > Bonn > 17/18 October 2018

- Coordinated measurements Poldirad MIRA35
- → Example Measurement 2017-01-30 15:08

Minimum detectable/discernable signal (MDS):

- ✓ C-band POLDIRAD:
 (1 µs pulse, 64 samples)
 ~ -26 dB at 5 km
 ~ -17 dB at 15 km
- ✓ Ka-band miraMACS:
 (0.2 µs pulse, 256 samples)
 ~ -40 dB at 5 km
 ~ -31 dB at 15 km
- MIRA35 is 14 dB more sensitive than POLDIRAD

Martin Hagen > PROM kick-off > Bonn > 1

Towards Ice Particle Effective Radius

- Particle size sensitivity of the Dual Wavelength Ratio
- Mie effects cause lower reflectivities for larger r_{eff}
- \checkmark attenuation is negligible for ice

Multi-Wavelength Microphysics Retrieval

Dual-polarization C- and Ka-band Retrieval:

- dual-wavelength reflectivity ratio
- reflectivity (long wavelength)
- dual-polarization

- \rightarrow effective radius of ice particles
- \rightarrow ice water content IWC
- \rightarrow hydrometeor classification
- \rightarrow particle habit

Lessons learned:

- calibration of both radars essential
- optimizing of C-band sensitivity necessary
- scan timing / advection to be considered
- additional W-band radar could improve retrieval

WP 4.1: Comparability of Measurement and Model Output

- Development of comparison strategy
 - → observation space
 - → model space

