Investigation of the initiation of convection and the evolution of precipitation using simulations and polarimetric radar observations at C- and Ka-band

Tobias Zinner, **Christoph Knote**, Bernhard Mayer *LMU Munich* Martin Hagen, Florian Ewald, Silke Gross *DLR*, *Wessling*

IcePolCKa work plan

automated, synchronized, cloud-tracking observations by Poldirad (DLR) and MIRA (MIM) - also off-axis supported by targeted scans from Hohenpeissenberg DWD observatory collaboration with Michael Frech (DWD)

Tracking of objects in radar, satellite, model

optical flow based automated tracking methods

Magdeburg

Nuernberg

11°F

10°F

Muencher

12°E

13°F

54°N

53°N

52°N

51°N

50°N

49°N

48°N

4°E

5°E

6°E

tracking of satellite cloud objects, Meteosat, 31.08.08

Cb-TRAM, Zinner et al. 2008, 2011, 2013

tracking of radar objects, DWD data, 24.06.16

9°F

8°F

nkfurt-Main

RadTRAM, Kober et al. 2009 BSc M. Laufmann, 2017

tracking of cloud objects, in 3D model data

Klinger et al., 2017

High resolution modeling with WRF

we already conduct daily 4-day WRF forecasts for internal research support and educational aspects

Cloud microphysics scheme evaluation

- high-resolution (<1km) WRF simulations of observation periods
- identical runs, with cloud microphysics schemes of different levels of complexity
- create dataset large enough for statistical comparison with observations
- software archeology necessary to investigate actual implementation and parameter set

Deriving comparable variables

CR-SIM radar forward operator

<u>C</u>loud Resolving Model <u>R</u>adar <u>Sim</u>ulator (CR-SIM)

Aleksandra Tatarevic and Pavlos Kollias Mariko Oue

Applied Radar Science Group

www.radarscience.weebly.com

APPLIED RADAR SCIENCE GROUP

- well-known and tested, WRF-compatible
- ready to use data from more sophisticated microphysics schemes (double-moment, spectral bin)
- developments will be necessary for polarimetric observations

Analysis workflow

Summary

- ensemble of polarimetric, dual-wavelength radar observations of convective cell lifecycle
- ensemble of numerical simulations at cloud-resolving scales
- evaluation of model cloud microphysics schemes of different levels of complexity
- scheme-independent, novel constraints for cloud microphysics scheme developments

