IcePolCKa

Investigation of the initiation of convection and the evolution of precipitation using simulations and polarimetric radar observations at C- and Ka-band Contribution to Priority Programme SPP 2115: Polarimetric Radar Observations meet Atmospheric Modelling (PROM)

Gregor Möller² and Eleni Tetoni¹

Florian Ewald¹, Silke Groß¹, Martin Hagen¹, Christoph Knote², Qiang Li¹, Tobias Zinner²

^{1:} Institut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt, Oberpfaffenhofen (DLR)

^{2:} Meteorologisches Institut, Ludwig-Maximilians-Universität München (LMU)

The life-cycle of cloud and precipitation microphysics in radar observation and numerical model

Motivation

Early detection of thunderstorms

Microphysical processes are a main source of uncertainty

Goals

Tracking convective clouds over their lifetime

Analyze performance of microphysics parameterizations

Planned Methods

Targeted observations and coordinated scan patterns with two radars

Observations aided by data from DWD network

Numerical modeling using a nested WRF

IcePoICKa: The instruments

POLDIRAD

C-Band Weather Radar (5.5 GHz, 250 kW)

DLR, Oberpfaffenhofen

Range res: 150 m, Range max: 125 km

4.5 m antenna with 1° beam width

Full polarimetric (ZDR, KDP etc.)

Mira35

Milimeter Cloud Radar (35 GHz, 30 kW)

LMU, Munich

Range res: 30 m, Range max: 30 km

1 m antenna with 0.6° beam width

Linear Depolarization ratio (LDR)

Measurements:

Scan strategies

Goal: Tracking of complete convective life-cycle

On-axis scans	Off-axis scans	Markt Indersdorf	- 70
Intersection along 2D plane	Intersection along 1D profile	Erdweg Röhrmoos Bergkirchen Diching	- 60 - 50
Easy setup	Difficult to coordinate, cells must be tracked and followed	ürstenfeldbruck Kirchen Costor Gilching Vaterstetton Costor Wefäling Underfehning Costor	- 40 Zgp - 30
Convective cells rarely exactly on-axis	Allows following cells over their life-cycle	Immersee Stamberg Pocking Stamburg Wolfratshausen	- 10

4

Measurement procedure

- Plot of the latest POLDIRAD PPI
- User can pick target by mouse click
- Both radars run RHIs into target direction
- Precipitation movement is tracked automatically
- Radar azimuth direction is automatically adjusted

Variation SRHI: Three fast RHIs

- 1) Into target direction
- 2) Two degrees left of target
- 3) Two degrees right of target

First cases

In some cases: good agreement

Polarimetric and dual wavelength parameters available

Microphysical parameters retrievable

IcePolCKa

First cases

7

First cases

Off-axis profiles: First attenuation estimation

9

Off-axis profiles: First attenuation estimation

Campaign Recap:

April to July

- Executed many coordinated RHIscans with Poldirad and Mira35
- Applied two different strategies:

On-axis scans

➢ Off-axis scans

CAPOICKE

Goal: Improvement of microphysics schemes

- Use polarimetric and dual-wavelength measurements to analyze model performance
- Comparison in parameter space and observational space
- Use as many measurements as possible to get sound statistics

WRF simulations:

Model setup

- Three domains: Europe, Germany, Munich
- Global model: GFS, ECMWF
- Different **MP**-schemes:
 - Bulk (Thompson 1-moment, Morrison 2moment, Milbrandt and Yau 3-moment)
 - Spectral Bin (Fan et al. 2012)
 - P3 (Morrison and Milbrandt 2015)
- Simulation of all measurement days

Munich domain with resolution of 400 m

14

Summary:

and next steps

- Applied two dual-wavelength scan strategies
- Matched Off-axis profiles
- Applied first attenuation estimator
- Started first WRF simulations
- Started first CR-SIM simulations

Coming next

ÜNCHEN

- Better attenuation estimation
- Compare model and observations
- Decide on Forward Simulator

