

Operation Hydrometeors

An efficient volume scan polarimetric radar forward OPERAtor to improve the representaTION of HYDROMETEORS in the COSMO/ICON model

J. Mendrok, U. Blahak (DWD)

- ➔ What?
- ➔ Why?

- ➔ Approach
- ➔ Status
- Outlook

- ➔ Forward operator
 - synthetic observations from atmospheric state:
 - what would an certain observation look like for a given atmospheric state?

- ➔ Forward operator
 - synthetic observations from atmospheric state
- COSMO/ICON model
 - NWP atm. fields (qx, nx, T, ...)
 - hydrometeor microphysics

SPP 2115

- "FO is a fundamental prerequisite for the fusion of radar polarimetry and atmospheric modelling"
- Model validation
 - Forecast/analysis-based FO-derived synthetic observations vs real observations

- "FO is a fundamental prerequisite for the fusion of radar polarimetry and atmospheric modelling"
- Model validation

"An efficient volume scan polarimetric radar forward OPERAtor to improve the representaTION of HYDROMETEORS in the COSMO/ICON model"

- "FO is a fundamental prerequisite for the fusion of radar polarimetry and atmospheric modelling"
- Model validation
 - Forecast/analysis-based FO-derived synthetic measurements

vs real measurements

PROM

- FO challenges:
 - Accuracy
 - Assumptions due to "incomplete" NWP atm. state

- Efficient Modular VOlume scan RADar Operator
- Framework for efficient and yet accurate simulation of radar volume data of entire networks in a modular and highly configurable way
- Consistent to assumptions on particles in microphysics (PSDs, mass-size, vel-size), but no subgrid-scale clouds (e.g., parameterized cumulus or stratocumulus)
- Physics options for reflectivity and radial wind simulation:
 - Beam propagation, beam function smoothing, beam blockage
 - Mie- or Rayleigh scattering, attenuation
 - Partially melted particles (1- and 2-layer particles)
- Lookup tables for Mie-scattering for efficiency
- Parellel code, online coupled to both COSMO- and ICON models, or applicable offline to 3D model state data stored on disc
- Simulated volume scans (range, azimuth, elevation)

EMVORADO

- → $Z = f(\beta_b), A = f(\beta_e)$
- 2 real

➔ "Mie"-LUTs

i.e. one value each

- Z, A per hydrometeor type
- f(q_x, T, [melt fraction])

per model grid point or radar bin

EMVORADO-POL

 $Z_h, Z_{DR}, L_{DR}, \rho_{hv}, K_{DP}, A_h, A_{DP}$ $= f(\mathbf{s}^{f/b}{}_{hh}, \mathbf{s}^{f/b}{}_{vv})$ $= f(\mathbf{Z}, \mathbf{K})$ (additivity!)

➔ "Mie"-LUTs

- 8 additive real-number parameters per hydrometeor type
- f(q_x, T, [melt fraction], [elev ang, ...])
- ➔ further "incomplete-NWP" assumptions
 - shape: aspect ratio f(D)?
 - orientation: canting (distrib) f(?)?

i.e. one value each per radar bin, elev-dep. values at model grid points

23.10.2019 – PROM Meeting, Bonn

➔ "Quick start" applying 3rd party pol-module:

- ➔ "Quick start" applying 3rd party pol-module:
 - J.Snyder (NSSL) EMVORADO extention
 - T-matrix interface
 - $\beta_x \rightarrow S^{f/b}_{a/b}$ (oblates only)
 - $Z, A \rightarrow Z_h, Z_{DR}, L_{DR}, (\rho_{hv}), K_{DP}, A_h, A_{DP}$ (incl. use in LUTs :-/)
 - orientation: [Ryzhkov11] angular moments and distribution parameters
 - Status:
 - Merged into current EMVORADO & running & testing

- "Quick start" applying 3rd party pol-module: Testing (! slightly outdated !)
 - Radar parameter curtains of a "warm bubble" scene: **Reasonable patterns**

- "Quick start" applying 3rd party pol-module: Testing (! slightly outdated !)
 - Radar parameter curtains of a "warm bubble" scene: Reasonable patterns, **but...**

PROM

SPP 2115

- → "Quick start" applying 3rd party pol-module: Testing (! slightly outdated !)
 - polEMV (spheroid) : polEMV (tmat-spheres) : polEMV (mie) : opEMV (mie)

23.10.2019 - PROM Meeting, Bonn

PROM

- → "Quick start" applying 3rd party pol-module: Testing (! slightly outdated !)
 - polEMV (spheroid) : polEMV (tmat-spheres) : polEMV (mie) : opEMV (mie)

- "Quick start" applying 3rd party pol-module: Testing (! slightly outdated !)
 - polEMV (spheroid) : polEMV (tmat-spheres) : polEMV (mie) : opEMV (mie)

- tests vs opEMV & Mie ok:
 - polarimetric parameters
 ~0 (except Z_{DR} at low Z_H)
 - tmat-spheres ~ miespheres
- unit (?) issues in L_{DR} and K_{DP}
- empty ρ_{hv}
- known or expected issues (not tested or shown here):
 - additivity
 - elevation angle dependence

23.10.2019 – PROM Meeting, Bonn

- Q: How much does this affect the polarimetric parameters?
 (And how good are some common approximations these?)
- ➔ M: single-particle case study of a rain drop
 - De = 5.0mm
 - ar ~ 0.4 (oblate) (ar_pro = 1/ar_obl)
 - m ~ (8.4, -2.2)

De = 5.0mm ar ~ 0.4 m ~ (8.4, -2.2)

23.10.2019 – PROM Meeting, Bonn

De = 5.0mm

 $m \sim (8.4, -2.2)$

PROM

SPP 2115

ar ~ 0.4

- Orientation effects (over elevation...): Zh
 - explicit orientation averaging (-) vs. angular moment approach (o)
 - explicit averaging (ea) verified vs. Mishchenko total-random Tmatrix and vs. "oriented" spheres

23.10.2019 - PROM Meeting, Bonn

- Orientation effects (over elevation...): **Zh**
 - explicit orientation averaging (-) vs. angular moment approx. (o)

- difference of Zh(β=0) and Zh(βstd=40°) ~25%
- [Ryzhkov11] angular moments (A)
 approximate orientation effects
 deviations in Zh(0) small, but
 equivalent-std offset up to 5°

for std
$$\leq$$
50°, Zh(A) < Zh(ea)

- using Zh(0) for all Zh(elev) amplifies the underestimation
- total-random A-approximation is worse than azimuthallyrandom with large std!?!

De = 5.0mm

 $m \sim (8.4, -2.2)$

ar ~ 0.4

PROM

SPP 2115

- Beyond the "Quick start": own/re-done PolEMVORADO module
 - improve code structure / modularisation (avoid Mie & Tmat entangling...)
 - revised set of internal and LUT parameters (additivity!!!)
 - opening up for other (less approximative) options / variants
 - user-controlable hydrometeor orientation (&shape?)
 - explicit orientation averaging (from efficient Tmat use)
 - consideration of elevation angle dependence
 - arbitrarily shaped particles
 - other scatt data sources (than Mie&Tmat → ScattDBs!)
 - •

Focus on accuracy before focus on efficiency!

Thank you for your attention!

Approach: Polarimetry theory

Name	Symbol [unit]	<u>Formula</u> (s)	
reflectivity factor at horizontal polarization	<u>ک</u> [mm ⁶ m ⁻³]	$ \stackrel{\propto}{\sim} \underbrace{\mathcal{S}_{hh}}_{\approx} \underbrace{\mathcal{S}_{hh}}_{11} ^2 \\ \propto Z_{11} - Z_{12} - Z_{21} + Z_{22} $	- Pc
	Z _H [dBZ]	= 10 log ₁₀ (<u>Z</u>)	
reflectivity factor at vertical polarization	<u>کر</u> [mm ⁶ m ⁻³]	$ \stackrel{\propto}{\sim} \underbrace{ g_{yy}}_{\infty} \\ \stackrel{\approx}{\sim} \underbrace{S_{yy}}_{11} ^2 \\ \stackrel{\approx}{\sim} Z_{11} + Z_{12} + Z_{21} + Z_{22} $	
	Z _v [dBZ]	$= 10 \log_{10}(Z_{\chi})$	
Difference reflectivity	Z _{pp} [mm ⁶ m⁻³]	$= \underline{Z}_{\underline{h}} - \underline{Z}_{\underline{\lambda}} $ $\propto Z_{12} + Z_{21}$	-
Differential <u>reflectivity</u>	Z _{DR} [dB]	$= Z_{h}/Z_{v} = Z_{H}-Z_{v} = g_{hh}/g_{vv}$ = $ S_{hh} ^{2} / S_{vv} ^{2}$ = $(Z_{11}-Z_{12}-Z_{21}+Z_{22}) / (Z_{11}+Z_{12}+Z_{21}+Z_{22})$)
Linear <u>depolarization</u> ratio	LDR [-]	$= g_{hy}/g_{yy}$ = $ S_{hy} ^2 / S_{hy} ^2$ = $(Z_{11}-Z_{12}+Z_{21}-Z_{22}) / (Z_{11}-Z_{12}-Z_{21}+Z_{22})$	
Co-polar (also: cross) correlation coefficient	ք _{իչ} [-]	$ \approx \underline{S}_{hh}\underline{S}_{yy}^{*} / (\underline{\sigma}_{hh}\underline{\sigma}_{yy})^{1/2} = ((Z_{33}^{*}+Z_{44}^{*})^{2}+(Z_{43}^{*}-Z_{34}^{*})^{2})^{1/2} / (\underline{\sigma}_{hh}\underline{\sigma}_{yy})^{1/2} $	→ se
Backscatter differential phase	δ _{hy} [°]	= $\arg(S_{hh}S_{yy}^{*})$ = $\arctan((Z_{43}-Z_{34})/(Z_{33}+Z_{44}))$	de
Specific differential phase	K _{pp} [°/km]	$ \approx \operatorname{Re}(\operatorname{S}^{0}_{hh} - \operatorname{S}^{0}_{vv}) $ $ \approx \operatorname{K}_{34} $	
Differential phase shift	$\Phi_{\rm DP} \ [^\circ]$	<u>Path</u> integral <u>of</u> K _{pp}	
Specific attenuation at horizontal polarization	A _h [dB/km]	∝ Im(S ⁰ _{hh}) ∝ K ₁₁ -K ₁₂	
Specific attenuation at vertical polarization	A, [dB/km]	∝ Im(S ⁰ _{vv}) ∝ K ₁₁ +K ₁₂	
Specific differential attenuation	A _{DP} [dB/km]	∝ Im(S ⁰ _{hh} -S ⁰ _{vv}) ∝ K ₁₂	ting, Bonn

- ➔ Possible LUT parameter sets:
 - $\begin{array}{ll} & \sigma_{hh}, \, \sigma_{vv}, \, \sigma_{hv}, \\ & \mathsf{Re}(\mathsf{S}_{hh}\mathsf{S}^*_{vv}), \, \mathsf{Im}(\mathsf{S}_{hh}\mathsf{S}^*_{vv}), \\ & \mathsf{Re}(\mathsf{S}^{\scriptscriptstyle 0}_{hh} \text{-} \mathsf{S}^{\scriptscriptstyle 0}_{vv}), \\ & \mathsf{Im}(\mathsf{S}^{\scriptscriptstyle 0}_{hh}), \, \mathsf{Im}(\mathsf{S}^{\scriptscriptstyle 0}_{vv}) \end{array}$
- select/design set (easily)
 derived from S and Z/K data

PROM

Elevation effects perfectly horizontally (and vertically) oriented particles: ar ~ 0.4 m ~ (8.4, -2.2)

De = 5.0mm

Elevation effects perfectly horizontally (and vertically) oriented particles:

- low variation in Zh at elev<25°
- ≥10% variation in Zv, ~20% in Zdr
- Ryzhkov16-Zdr works well over all elevs
- even for vertically oriented oblates
- largest devs at medium elevs

De = 5.0mm

 $m \sim (8.4, -2.2)$

ar ~ 0.4

De = 5.0mm

Elevation effects perfectly horizontally (and vertically) oriented particles: ar ~ 0.4 m ~ (8.4, -2.2)

- Ryzhkov16 approx only for Zdr, but desireable for other parameters, too
- all params show some kind of "sin-like" behaviour
- 2-pt sin-fit (not shown) works very well over (d)elevs <25°

