

Climate model PArameterizations informed by RAdar (PARA)

Sabine Hörnig Silke Trömel Johannes Quaas Clemes Simmer

Rain formation over ice phase

More than **95%** of rain is originated from ice phase processes

Rain formation over ice phase

Cloud processes are unresolved → Subgrid – scale parametrizations informed by observations and/or high resolving models

four relevant processes, where mixed phase processes are not relevant

WP1-M: Ice cloud heterogeneity

Usually: mean liquid and ice content is used for calculation of process rates

 \rightarrow Causes biases for nonlinear processes

For a realistic representation:

- tuning of process rates
- realistic subgrid-scale cloud variability with help of PDF based approach (currently not considered)

workplan:

- PDF approach for cloud ice
- Evaluation of cloud ice variability with help of the DARDAR (raDAR/liDAR) retrieval and the detailed radar observations

WP1-R: Ice cloud heterogeneity

Workplan:

- Polarimetric retrievals of IWC, number concentration N_t , and mean volume diameter D_m are applied to QVPs
 - → evaluated in POLICE
 - \rightarrow PPIs for GCM subgrid-scale variability
 - \rightarrow QVPs for best estimate
- Provision of mean value and variance of IWC($D_m < D_{aggr}$), $N_t(D_m < D_{aggr})$, $D_m(D_m < D_{aggr})$ for each radar site as a function of height, where $D_{aggr} = 100 \mu m$

WP2-M: Snow formation via aggregation

Snow formation in the dense part of ice clouds via aggregation

workplan:

- PDF of cloud ice variability
 - → cumulative PDF
 - \rightarrow specific cloud ice
 - Evaluation with the aggregation parametrization and radar observations
- Revising the size threshold between cloud ice and snow might lead to a better model-observation match

Torsten Weber, PhD Thesis, MPI for Meteorology, 2010

WP2-R: Snow formation via aggregation

workplan:

Different radar-based parameters for the onset of aggregation are investigated.

- I. $IWC(D_m > = D_{aggr})$
- II. POLICE provides in-situ measurements of IWC_{aggr} and D_{aggr} for comparison
- III. POLICE will help to specify the gradient in Z_H , i.e. β . \rightarrow Comparison with respective synthetic β .

WP2-R: Snow formation via aggregation

workplan:

Different radar-based parameters for the onset of aggregation are investigated.

- I. $IWC(D_m > = D_{aggr})$
- II. POLICE provides in-situ measurements of IWC_{aggr} and D_{aggr} for comparison
- III. POLICE will help to specify the gradient in Z_H , i.e. β . \rightarrow Comparison with respective synthetic β .

Provision of first-guess estimateor IWC_{aggr} based on model defined D_{aggr} and verified radar-observed thresholds based on in-situ measurements.

WP3-M: Melting of precipitation

Current version: heat transfer from the excess temperature in the environment compared to the melting temperature $T_0 = 0^{\circ}$ C

 \rightarrow occurs in one time step

Dependence of time may be more realistic

Plan of work:

- → Evaluation of various time scales longer than the model time step with the radar observations (melting layer depth)
 - to identify the time scale that is most consistent with the observations

WP3-R: Melting of precipitation

Workplan:

- Extend statistics on ML-(thickness) to cover a broader range of rain rates
- Use SBM of the ML to investigate further improvements in GCM parameterizations of melting
 - convert radar-derived snow DSDs into rain DSDs using the GCM-modeled profiles of T and RH.
 - Compare N_{rain}, D_{rain}, LWCprofiles from SBM, radar and GCM
 - Process refinement s in SBM
 - Provision of observed distribution of ML-thickness and identified processes to be included in GCM parameterizations.

WP4-M: Evaporation of precipiation

Rain evaporates in sub-saturated air below the cloud

Current parametrization in ICON-GCM:

- Evaporative flux of water vapor from rain drops to subsaturated environment
 - \rightarrow Using grid-box mean of relative humidity

Workplan:

With use of the subgrid scale variability of relative humidity

Evaluation of the new and the old version against the height-resolved rain flux observed by radar

Investigation of the empirical parameters of the evaporation parametrization

WP4-R: Evaporation of precipiation

Workplan:

The usability of LWC(A) retrievals compared to LWC(K_{DP}) retrievals will be investigated. For rain retrievals the combined R(A, Z_{H})-relations will be applied.

Provision of LWC(h) and R(h) as a function of height h using most accurate retrievals.

Employ SBM to further refine evaporation parameterizations. Compare vertical profiles from SBM, radar, and GCM below ML.

• Evaluate the assumption of the simple Marshall-Palmer DSD.

Thank you

Sabine Hörnig Silke Trömel | <u>https://www2.meteo.uni-bonn.de/staff/stroemel/doku.php/radar:radargroup</u> Johannes Quaas | <u>http://research.uni-leipzig.de/climate</u> Clemens Simmer | <u>http://www2.meteo.uni-bonn.de/staff/femmag/wiki/doku.php</u>