Polarimetry Influenced by CCN aNd INP in Cyprus and Chile (PICNICC) – PhD 2

PROM Kick-Off Meeting - Bonn, October 17-18, 2018

Patric Seifert, Heike Kalesse, Teresa Vogl, <u>Audrey Teissiere</u>, Johannes Quaas

Collaborators:

- Rodanthi Mamouri (Cyprus University of Technology, Limassol, Cyprus)
- Boris Barja (University of Magallanes, Punta Arenas, Chile)

Punta Arenas

-20 -15

Cloud-top temperature (°C)

51° N 🔫 Leipzig

-10

53 °S --- Punta Arenas

-5 0

Leipzig

S100

taining cloi

-40 -35

-30 -25

clouds (

Fraction of

Two 1-year experiments for contrasting the microphysical

> fingerprints of mixed-phase clouds

2 Patric Seifert, PICNICC, SPP PROM Kick-Off Meeting, Bonn, 17-18 Oct 2018

Not just a PICNICC: Work Plan

Audrey Teissiere: Oct'17 – Dec'18 in Antarctica

Durmont d'Urville

Dumont a d'Urville

PhD 1: Teresa Vogl PhD 2: Audrey Tessiere Joint PhD1/PhD2

WP	Task	Year 1	Year 2	Year 3
Exp	DACAPO-PESO & DACAPO-LE field experiments			
1	Analysis of bulk quantities (polarimetry & multi-wavelengths)			
	SLDR analysis			
	Microphysical fingerprinting (gradients, DWR,Z-V _D -relation)			
2	Analysis of Doppler Velocity spectra of Z and LDR			
	Liquid layer detection			
	Microphysical fingerprinting			
3	Modelling of microphysical processes & interpretation			
	Derive radar observables from forward models			
	ICON-NWP modelling for Cyprus & Punta Arenas			
	Interpretation of aerosol contrasts			
	Interpretation of effects of SCL on cloud microphysics			

PhD 2: WP 1 – SLDR analysis – Approach

- Utilization of scanning (30°-90°) 35-GHz SLDR-mode cloud radar Mira-35
- Elevation (rhi-) scans of polarimetric variables SLDR, ρ_s
- Derive corresponding ellipsoidal shape of hydrometeors

4 Patric Seifert, PICNICC, SPP PROM Kick-Off Meeting, Bonn, 17-18 Oct 2018

Myagkov et al., AMT, 2015

PhD 2: WP 1 – SLDR analysis – Case Study

Case Study: Cyprus, 08 Jan 2017

- oblate particles at cloud top (dendrites)
- Isometric particles (graupel, aggregates?) toward cloud base

5 Patric Seifert, PICNICC, SPP PROM Kick-Off Meeting, Bonn, 17-18 Oct 2018

PhD 2: WP 3 – Forward Modeling

(1) Cloud Resolving Model Radar Simulator (CR-SIM)

- Microwave forward operator including polarimetric parameters (Z_{hh}, Z_{vv}, Z_{vh}, Z_{DR}, LDR, Kdp), but no Doppler spectra
- 4 weeks of secondment to Stony Brook University, NY for training in CR-SIM
- Potentially: Visit of Mariko Oue (Stony Brook U.; CR-SIM) to Leipzig (TROPOS/LIM)

(2) Passive and Active Microwave TRAnfer model (PAMTRA)

- Microwave forward operator including Doppler spectra, but no polarimetry
- Strong collaboration within PROM

Existing parameterizations

of:

WP 3 – Interpretation (PhD 1+2; PIs)

- 1. ICON-NWP output will be averaged in a radius of 20 km around the observation sites (Punta Arenas / Cyprus) to:
 - derive the modeled ratio of aggregation and riming
 - create averaged profiles of forward-modeled radar quantities (Z, V, LDR, SLDR)
- 2. Evaluation against averaged observed profiles for different categories of: cloud top temperature, aerosol burden, precipitation rate, Z and V- values and gradients
- 3. Are there regional differences in the radar observations? Can these be attributed to aerosol variability?
- 4. Can we identify deficiencies of ICON NWP under certain conditions (e.g., wrt aerosol load)?
- 5. What can ICON NWP + forward modeling tell us about the required sensitivity in the observations for identification of certain processes (e.g., ratio between aggregation/riming)?
- 7 Patric Seifert, PICNICC, SPP PROM Kick-Off Meeting, Bonn, 17-18 Oct 2018