Polarimetric signatures of <u>ice</u> microphysical processes and their interpretation using insitu observations and cloud modeling (POLICE)

Andrew Lowry

Silke Trömel, Clemens Simmer (Uni Bonn)

Objective

Exploitation of radar polarimetry for quantitative process detection in precipitating clouds and for model evaluation

Major Goals

Exploit existing and new in-situ measurements in the DGL and below to:

- 1) Evaluate hypotheses on the origin of enhanced K_{DP} in DGL;
- 2) Quantify multiple indicators to discriminate between aggregation and riming;
- Evaluate the most recent polarimetric ice microphysical retrievals;
- 4) Evaluate the representation of particle type and size distribution in ICON-LAM;
- 5) Make use of spectral bin modelling (SBM) to identify processes resonsible for deficiencies regarding the representation of ice particle size distributions in ICON-LAM.

PROM

SPP 2115

Major Goals

State-of-the-art of polarimetric fingerprints

Perform literature review on:

- Latest understanding of K_{DP}-bands and polarimetric fingerprints of microphysical processes
- Radar data processing
- Quasi-Vertical-Profile vs. Columnar Vertical Profile methodology

What causes K_{DP}-bands in DGL?

Competing hypotheses:

- dendrites/and or hexagonal plates with very small aspect ratio
- snowflakes with irregular shapes in high concentrations
- more isotropic ice particles with nearly spherical shapes

Workplan:

Compare QVPs generated with BoXPol measurements, with in-situ measurements

Evaluation of ice-microphysical retrievals

Hypotheses:

Accuracy of most recent polarimetric ice microphysical retrievals (N_t, D_m, IWC) meet requirements for data assimilation and model evaluation/improvement

Ryzhkov et al. (2018):Bukovčić et al. (2018):
$$D_m = -0.1 + 2.0\eta$$
 with $\eta = \left(\frac{Z_{DP}}{K_{DP}\lambda}\right)^{1/2}$ and $Z_{DP} = z_H - z_V$, $IWC(K_{DP}, z_H) = 0.71 K_{DP}^{0.65} z_H^{0.28}$ $\log N_t = 0.1Z_H - 2\log\gamma - 1.33$ with $\gamma \approx 0.78\eta^2$ $IWC \approx 4.010^{-3} \frac{K_{DP}\lambda}{1-Z_{dr}^{-1}}$ with $Z_{dr} = 10^{0.1Z_{DR}}$

Murphy et al. (2018):

 $D_m = -0.17 + 1.41r + 0.715r^2 \text{ with } r = \left[\frac{z_{DP}}{K_{DP}\lambda}\right]^{1/3}$ $\log(N_{t,i}) = 0.16 + 0.1Z_H - 4.16\log(D_m)$ $\log(IWC) = -1.96 + \log(N_{t,i}) + 2.08\log(D_m)$

Hogan et al. (2006): $\log IWC(Z_H) = 0.06 \cdot Z_H - 0.0197 \cdot T - 1.7$

Evaluation of ice-microphysical retrievals

Hypotheses:

Accuracy of most recent polarimetric ice microphysical retrievals (N_t, D_m, IWC) meet requirements for data assimilation and model evaluation/improvement

Workplan:

- Accuracy assessment of ice microphysical retrievals by Ryzhkov (2018), Bukovčić et al. (2018), Murphy et al. (2018), and Hogan et al. (2006).
- Application to Quasi Vertical Profiles (QVPs) or more localized Columnar Vertical Profiles (CVPs) following the flight tracks.

Range-height view of an arbitrary CVP section

Radar algorithm development

Hypotheses:

 It is possible to distinguish between dominating aggregation and riming processes based on polarimetric weather radar measurements only

Workplan:

Evaluate and quantify indicators using in-situ measurements, esp.
 reduce uncertainties in expected range of decrease in Z_{DR} and DR.

Indicators to distinguish between aggregation and riming

- 1. Decrease in Z_{DR} above the ML
- 2. More pronounced decrease in depolarization ratio DR above the ML
- 3. Sagging of the ML
- 4. QVPs of Doppler velocity and birdbath scans point to updrafts

PROM

SPP 2115

- 5. Spectral fall velocities from vertically pointing Doppler radar
- Dual wavelength ratios: DWR(X, Ka)>4 dB for aggregates;
 DWR(X, Ka)<3 dB and DWR(Ka, W)>3 dB for rimed particles

ICON-LAM model evaluation wrt. the representation of particle type and distribution in DGL and below

- Hypotheses:
- In-situ measurements combined with quality-assessed ice microphysical retrievals provide insights in the representation of hydrometeor type and distribution in ICON-LAM
- Workplan:
- Identify comparable cloud sequences in QVPs/CVPs monitored by measurements and modelled by ICON-LAM
- Compare modelled hydrometeor types, concentration and sizes with in-situ measurements

Comparison between spectral bin model, bulk model and retrieved microphysical parameters.

Hypotheses:

- Coupling of the Hebrew University Cloud Model (HUCM) with polarimetric radar measurements uncovers the processes responsible for a potential misrepresentation of hydrometeor type and distribution
- Workplan:
- Comparison between Contour Frequency by Altitude Diagrams (CFADs) of N_t, D_m, IWC retrieved from radar and simulated from both HUCM and ICON-LAM at different heights
- Refinement of processes in HUCM will continue until a reasonable match between radar retrievals and model simulations is achieved

Questions?

Andrew Lowry andlowry@gmail.com

