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 Kilometre-scale ENsemble Data Assimilation (KENDA) system at DWD 
since March 2017 (Schraff et al. 2016, QJRMS) in operational mode:

Background information

 Convection-permitting model: COnsortium for Small-scale MOdeling 
(COSMO, Baldauf et al. 2011, MWR) with horizontal resolution 2.8 km 

 Data assim. scheme: Local Ensemble Transform Kalman Filter 
(LETKF, Hunt et al. 2007, Phy. D)

 Operational radar network: 16 C-band Doppler radars 

 Lateral boundary conditions: ICOsahedral Nonhydrostatic 
   (ICON, Zängl et al. 2015, QJRMS) 

Orography COSMO-DE domain (m)

LETKF : ● Analysis grid point 

▲Observation

…….. Localization radius
ICON grid structure with nested domains

Radar network
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 Approaches to represent model error

 Alternatives for representing subgrid-scale model error

 Idealized setup for radar data assimilation

 Summary and outlook

Outline
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Approaches to represent model error
  The performance of EnKF algorithms strongly depends on quality of 

background error covariance B-matrix which should
 be sufficiently large to account for sampling and model error

Research questions
 How to account for multiscale model error in B-matrix  in convective-scale 

assimilation? (Zeng et al. 2018 & 2019a, JAMES) 

 appropriately describe correlations between variables
       

Obs Modelt+36 t+64

 capture large- and small-scale features of model error

surface pressure charts 
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Approaches to represent model error
     Additive Noise (applied to analysis ensemble members): 

Construction of B-matrix by NMC-method (Zeng et al. 2018, JAMES):

Perturbation of u at 3 km

 Random draws from climatological B-matrix for global EnVar 
data assim. system for ICON   

 Random draws from set of model truncation error (Zeng et al. 2019a, JAMES)  

adapted to finer resolution of regional COSMO  and save as

Perturbation of u at 3 km

● provide unresolved uncertainty, called “SAN” (Small-scale Additive Noise) 

t1= 48 h,  t2 = 24 h

     random,    = 1 h
2014

● u, v, T, qv and p perturbed

● u, v, w, T  and qv perturbed

●  α = 0.1 

● provide synoptic uncertainty, called “LAN” (Large-scale Additive Noise) 

●  α = 1.25 

  &     : high & low resolution model   

    : interpolation operator
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Weather situation: a two-week period  (27 May – 9 June 2016) over Germany

If max. τc  ≤ 6 h, strong forcing;
If max. τc  > 6 h, weak forcing 

τc :convective adjustment time-scale [h] (Keil et al. 2014)
I--------------- strong forcing ------------I----------- weak forcing ----------I 

Experimental design

00:00 30 May 2018, strong forcing 18:00 05 June  2018, weak forcing 
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Objective verification skill scores:

 Fractions Skill Score  (FSS, Roberts & Lean 2008, MWR) : 

 [0,1],  perfect score 1

Pobs = 6/25 = 0.24 Pfcst = 6/25 = 0.24

If >= 5 mm/h, = 1; If < 5 mm/h, = 0 

Obs Model
for a threshold value, compare forecast fractions with 
observed fractions over different scales 

Example: precip. rate = 5 mm/h and scale of 5 grid points 
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Observations: SYNOP, AIREP, TEMP, PROF + radar reflectivity
Data assim. Scheme: LETKF (also for radar reflectivity using forward operator
EMVORADO (Zeng et al. 2014, JTECH; Zeng et al. 2016, QJRMS)
Assimilation window: one hour
Size of ensemble: 40 members, and 20 members are used for 6-h ensemble 
forecasts, initiated at 10, 11, …, 18:00 UTC
Localization: adaptive horizontal localization for conventional data, constant 
horizontal localization (16 km) for reflectivity
Observation error: adaptive for conventional data, constant (10 dBZ) for reflectivity
Period: 00:00 27 May – 00:00 03 June 2016 (strong forcing)
             00:00 03 June – 00:00 10 June 2016 (weak forcing) 

Experimental design
Set-up: 

E_LAN0.10

LAN (α = 0.1) SAN (α = 1.25) 

E_LAN0.10SAN1.25

Exp
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Results

Strong forcing Weak forcing

B
et

te
r

E_LAN0.10 is reference run. Differences with statistical significance indicated with 
dots.  
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 New warm-bubble technique developed at DWD (Zeng et al. 2019b, MWR): 

Alternatives for representing subgrid-scale model error 

 Physically based Stochastic Perturbations scheme (PSP, Kober and Craig 2016)
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Results
Weak forcing

B
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r

E_LAN0.10SAN1.25 is reference run. Differences with statistical significance indicated with dots.  

Alternatives for representing subgrid-scale model error 

E_LAN0.10SAN1.25

LAN (α = 0.1) Warm bubbleSAN (α =1.25) PSP

E_LAN0.10SAN1.25P

E_LAN0.10SAN1.25B

Exp

Set-up: 
(Zeng et al. 2019b, MWR): 



2019 PROM-meeting, Bonn                                                    yuefei.zeng@lmu.de  12

Idealized setup for radar data assimilation
Supercell simulation

Assimilation results

RMSE

w at 10 km

Truth Vr4.0 Z15.0 Z15.0Vr4.0
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Summary and future work

 The combination of large- and small-scale additive noise outperforms large-scale 
additive noise alone in both strong and weak forcing situations. The improvements are 
especially significant in weak forcing situation

  

 Further improvements can be achieved by using the PSP scheme or warm bubble technique

 Assimilation of radar radial winds and reflectivity exhibits possitive impacts in idealized setup

 Representation of model error in microphysics and obs. error in polarimetric radar 
measurement

 Sensitivity to errors in observation operator 

 Transition to ICON  

Future work: 
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 Kilometre-scale ENsemble Data Assimilation (KENDA) system at DWD 
since March 2017 (Schraff et al. 2016, QJRMS) in operational mode:

Background information

 Convection-permitting model: COnsortium for Small-scale MOdeling 
(COSMO, Baldauf et al. 2011, MWR) with horizontal resolution 2.8 km 

 Data assim. scheme: Local Ensemble Transform Kalman Filter 
(LETKF, Hunt et al. 2007, Phy.D)

 Obs. assim.: SYNOP, AIREP, TEMP , PROF,  MODES;  radar reflectivity

 Lateral boundary conditions: ICOsahedral Nonhydrostatic 
   (ICON, Zängl et al. 2015, QJRMS) 

Orography COSMO-DE domain (m)

LETKF : ● Analysis grid point 

▲Observation

…….. Localization radius
ICON grid structure with nested domains

Obs. assimilated
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Histogram of model truncation error samples for SAN

Approaches to represent model error

13
 k

m
3 

k
m

μ : 
meanσ : standard deviation 

γ :  kurtosis, γ = 0 if Gaussian distribution

…………  :  Gaussian distribution
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Results
Spread (dashed lines) and RMSE (solid lines) of background ensemble      

Strong forcing Weak forcing

E_LAN0.10 is reference run. Differences with statistical significance indicated with 
dots.  
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Results

13 km
-
3

-5/3

Averaged kinetic energy spectra of analysis ensemble members

Averaged surface pressure tendency of ensemble members

-5/3
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Results
Weak forcing
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E_LAN0.10 is reference run. Differences with statistical significance indicated with 
dots.  
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 Relaxation To Prior Perturbations (RTPP, Zhang et al. 2004)

Approaches to represent model error

1. Relaxation methods: 

 Relaxation To Prior Spread (RTPS, Whitaker and Hamill 2012)

<=>

Ad hoc, usually used to account for unknown model error !

        αp = 0.75 

,    αs = 0.95 

Ensemble perturbations:
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Observations: SYNOP, AIREP, TEMP, PROF + radar reflectivity
Data assim. Scheme: LETKF (also for radar reflectivity using forward operator
EMVORADO (Zeng et al. 2014, JTECH; Zeng et al. 2016, QJRMS)
Assimilation window: one hour
Size of ensemble: 40 members, and 20 members are used for 6-h ensemble 
forecasts, initiated at 10, 11, …, 18:00 UTC
Localization: adaptive horizontal localization for conventional data, constant 
horizontal localization (16 km) for reflectivity
Observation error: adaptive for conventional data, constant (10 dBZ) for reflectivity
Period: 00:00 27 May – 00:00 03 June 2016 (strong forcing)
             00:00 03 June – 00:00 10 June 2016 (weak forcing) 

Experimental design
Set-up: 

E_LAN0.10

LAN (α = 0.1) SAN (α = 1.25) RTPP (α = 0.75) RTPS (α = 0.95)

E_RP0.75

E_RS0.95

E_LAN0.10SAN1.25

Exp
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 Reflectivity composite in initial time & forecast 
Obs E_LAN0.10 E_RP0.75

Initial time

3 h

Probability: How much percent of ensemble members exceed 20 dBZ

Results
 Reflectivity composite at initial time (14:00 30 May, 2016, strong forcing) & 3 h forecast 

E_RS0.95 E_LAN0.10SAN1.25
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 Reflectivity composite in initial time & forecast 
Obs E_LAN0.10 E_RP0.75

Initial time

3 h

Probability: How much percent of ensemble members exceed 20 dBZ

Results
 Reflectivity composite at initial time (12:00 06 June, 2016, weak forcing) & 3 h forecast 

E_RS0.95 E_LAN0.10SAN1.25
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Results
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E_LAN0.10 is reference run. Differences with statistical significance indicated with 
dots.  

Strong forcing Weak forcing
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Development of radar observation operator

Zeng et al. 2014, JTECH; 
Zeng et al. 2016, QJRMS

Efficient Modular Volume RADar Operator 
(EMVORADO, pre-operational at DWD)

Idea:
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First experiments of radar reflectivity data assimilation 

Set-up: 

CONV

Radar reflectivity Conventional obs.

CONV+RAD

Exp

(Bick et al. 2016, QJRMS)
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Conventional obs.: SYNOP, AIREP, TEMP , PROF
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Conservation properties of data assimilation schemes 
 Idealized experiments with shallow water model

E_BSP_NO

constraint of enstrophy conservation

E_BSP_Es

Exp

B
et

te
r

Set-up: 

Zeng and Janjic 
2016, QJRMS; 
Zeng et al. 2017, 
QJRMS 
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 New warm-bubble technique developed at DWD (Zeng et al. 2019b, MWR): 

Alternatives for representing subgrid-scale model error 

 Physically based Stochastic Perturbations scheme (PSP, Kober and Craig 2016)
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