Microphysical and thermodynamic retrievals using polarimetric radars

Alexander Ryzhkov

University of Oklahoma, USA

Layout of the talk

- Microphysical retrievals
- Thermodynamic retrievals
- Some thoughts on forward operators

Two possible ways to optimize microphysical parameterization of NWP models

- **Radar microphysical retrievals**
- **Forward radar operators**

Radar microphysical retrievals

Estimation of liquid water content (LWC)

Estimation of median volume diameter of raindrops

S band
\n
$$
D_0 = 0.171 Z_{DR}^3 - 0.725 Z_{DR}^2 + 1.48 Z_{DR} + 0.717
$$
 Brandes et al. (2002) Florida
\n
$$
D_0 = 0.0436 Z_{DR}^3 - 0.216 Z_{DR}^2 + 1.08 Z_{DR} + 0.659
$$
 Cao et al. (2008) Oklahoma
\n**C band**
\n
$$
\left\{\n\begin{array}{ll}\nD_0 = 0.0203 Z_{DR}^4 - 0.149 Z_{DR}^3 + 0.221 Z_{DR}^2 + 0.557 Z_{DR} + 0.801 & \text{if } Z_{DR} < 1.25 \text{ dB} \\
D_0 = 0.0355 Z_{DR}^3 - 0.302 Z_{DR}^2 + 1.06 Z_{DR} + 0.684 & \text{if } Z_{DR} > 1.25 \text{ dB}\n\end{array}\n\right.
$$
 Bringi et al. (2009) Darwin

X band $D_0 = 1.46 Z_{DR}^{0.49}$ Matrosov et al. (2007) California

Estimation of normalized concentration Nw

Spatial distribution of Z, N_w , and D_0 in MCS

Ice microphysical retrievals

- **All existing ice microphysical retrievals are based on the use of radar reflectivity Z measured at a single or multiple radar frequencies**
- **The IWC(Z) relations are notoriously inaccurate because they are strongly parameterized by (a) mass-weighted diameter D^m , (b) total concentration N^t , and (c) density (or degree of riming)**

$$
N(D) = N_{0s} \exp(-\Lambda_s D) \qquad \rho(D) = \alpha D^{-1} \qquad \Lambda_s = 4/D_m
$$

$$
IWC = 3.81 10^{-4} \alpha^{-0.2} N_{0s}^{0.4} Z^{0.6} \qquad IWC = 3.09 10^{-3} \frac{Z}{\alpha D_m^2}
$$

- D_m varies 2 orders of magnitude
- N_t varies 4 orders of magnitude
- α changes at least by a factor of 4

Dependence of the multiplier in the S(Z) relation on N0s retrieved from the snow disdrometer measurements

Bucovcic et al. 2018

Basic formulas for polarimetric ice retrievals

$$
Z = \frac{|K_{i}|^{2}}{|K_{w}|^{2}} \frac{1}{\rho_{i}^{2}} \int \rho_{s}^{2}(D)D^{6}N(D)dD
$$

$$
K_{DP} = \frac{0.27\pi}{\lambda \rho_{i}^{2}} \left(\frac{\varepsilon_{i}-1}{\varepsilon_{i}+2}\right)^{2} \int F_{shape}F_{orient}\rho_{s}^{2}(D)D^{3}N(D)dD
$$

Z is proportional to the 4th moment of snow SD whereas KDP is proportional to its 1st moment

Exponential size distribution

Median volume diameter as a function of $[Z/(K_{\text{DP}}\lambda)]^{1/3}$

The width of the canting angle distribution σ in ice typically varies between 10 and 40^o. This is a serious source of uncertainty

Utilization of the Z_{DP}/K_{DP} ratio for estimation of D_m

 $Z_{DP} = Z_h - Z_v$

	Crystal habit	c	$\mathbf d$
V.	Dendrites	0.038	0.377
1.	Solid thick plate	0.230	0.778
1.	Hexagonal plates	0.047	0.474
1.	Solid columns $(L/h < 2)$	0.637	0.958
1.	Solid columns (L/h > 2)	0.308	0.927
1.	Hollow columns $(L/h < 2)$	0.541	0.892
1.	Hollow columns $(L/h > 2)$	0.309	0.930
1.	Long solid columns	0.128	0.437
1.	Solid bullets (L < 0.3 mm)	0.250	0.786
V.	Hollow bullets $(L > 0.3$ mm)	0.185	0.532
1.	Elementary needles	0.073	0.611

2 $4.010^{-2} \frac{1 - D P^{2}}{1 - Z}$ 1

 K_{DP}

 $_{-2}$ K_{DP} λ

dr

Ξ

Z

 $h = cL^d$

IWC

 \approx

 $D_{\rm m} = -0.1 + 2.0 \eta$

$$
\gamma = \alpha D_m^2 \approx 0.78 \eta^2 = 0.78 \frac{Z_{DP}}{K_{DP} \lambda}
$$

 $log(N_t) = 0.1 Z(dBZ) - 2log(\gamma) - 1.33$

The Z_{DP}/K_{DP} ratio provides estimate of D_m which is immune to the particles shape and orientation

Midlatitude vs. Tropical MCSs

Midlatitude vs. Tropical MCSs

Midlatitude vs. Tropical MCSs

Radar thermodynamic retrievals

Warming / cooling rates retrieved from radar data

The use of the Z_{DR} column - based index produces much more realistic warming / cooling rates than $Z -$ based index of latent heat profiles

Cooling rates due to evaporation of rain

Xie et al. 2016

- $\frac{1}{2}$ Evaporation induced cooling profiles in rain can be derived using a simple 1D evaporation model
- Values of Z and Z_{DR} at the top of the rain layer can be used as indexes of lookup tables for cooling rates
- Depending on Z_{DR}, cooling rates differ by an order of magnitude for the same Z

c) mPING: 0200 UTC 22 Feb 2013

d) SBC: 0200 UTC 22 Feb 2013

Columnar vertical profiles (CVP) of polarimetric radar variables through the ML measured during MCS on May 20, 2011

Comparison of simulated and observed vertical profiles of radar variables within the melting layer

Simulating possible mechanisms causing modulation of the ML height and strength

Maximum *Z* v. **Cooling Rate** in the Melting Layer

Maximum *Z* in the brightband contains *little to no information* about the maximum cooling rate in the melting layer (high RMSE, low r^2).

Bulk of cooling is due to smallest particles, with *Z* a strong function of the largest particles.

Maximum **Δ***Z* v. **Cooling Rate** in the Melting Layer

Maximum Δ*Z* in the brightband tends to decrease for increasing cooling rates as distributions with large numbers of small particles tend to have smaller D_{max} .

Maximum Δ*Z* in the brightband contains *little to no information* about the maximum cooling rate in the melting layer (high RMSE, low r^2).

Maximum K_{DP} v. **Cooling Rate** in the Melting Layer

Maximum K_{DP} in the brightband is *very highly correlated* with the maximum cooling rate in the melting layer (low RMSE, high r^2), in stark contrast to all other variables.

Coefficient of linear relationship changes as a *f*(Γ,RH).

What is responsible for this strong $K_{DP,max}$ - ∂T/∂t_{max} relationship?

The cooling rate is approximately proportional to $M_{1.5}$ of the PSD.

Z is approximately proportional to $M_3 - M_{3.5}$ of

 K_{DP} is approximately proportional to the M_{1.5} of the PSD for the bins with the majority of the contribution to K_{DP} .

Moment of PSD variable ∝ to

Contribution of different processes to cooling rates in hailstorms below the freezing level

Correlations of maximal cooling rate with various radar variables in hailstorm below the freezing level

Forward operators

Pfeifer et al. (2008) A poalrimetric radar forward operator for model evaluation

Jung et al. (2008) Assimilation of simulated polarimetric radar data for a convective storm using an Ensemble Kalman Filter, Part I: Observations operators for reflectivity and polarimetric variables

Ryzhkov et al. (2011) Polarimetric radar observation operator for a cloud model with spectral microphysics

Zeng et al. (2016) An efficient modular volume-scanning radar forward operator for NWP models: description and coupling to the COSMO model

Wolfensberger and Berne (2018) From model to radar variables: a new forward polarimetric radar operator for COSMO

Modeling intrinsic and measured vertical profiles of Z, Z_{DR} , and ρ_{bv} within the melting layer

Intrinsic profiles are parameterized by a limited number of parameters: the differences between maximal values of Z and Z_{DR} within the ML and the ones in rain, depth of the ML, slope of the vertical dependence of Z above the ML, etc.

QVP within the melting layer at S band

Refreezing signature

KAKQ RhoHV from 20150217-020041 to 20150217-125235

Estimation of the width of the canting angle distributions σ

$$
\frac{C_{dr}}{L_{dr}} \approx \frac{\langle |s_h|^2 \rangle}{\langle |s_h + s_v|^2 \rangle} \frac{1}{\sigma^2 + \langle \alpha \rangle^2}
$$

$$
\sigma^2 = \frac{\langle |S_h|^2 \rangle}{\langle |S_h + S_v|^2 \rangle} \frac{L_{dr}}{C_{dr}} \qquad \langle \alpha \rangle = 0
$$

$$
C_{dr} \approx \frac{1 + Z_{dr}^{-1} - 2\rho_{hv} Z_{dr}^{-1/2}}{1 + Z_{dr}^{-1} + 2\rho_{hv} Z_{dr}^{-1/2}}
$$

$$
\frac{\langle |s_h|^2 \rangle}{\langle |s_h + s_v|^2 \rangle} = \frac{1}{1 + Z_{dr}^{-1} + 2\rho_{hv} Z_{dr}^{-1/2}}
$$

$$
\sigma^2 = \frac{L_{dr}}{1 + Z_{dr}^{-1} - 2\rho_{hv} Z_{dr}^{-1/2}}
$$

 $\langle \alpha \rangle$ - mean canting angle

σ – width of the canting angle distribution

 $s_{h,v}$ – scattering amplitudes at H and V polarizations

Linear depolarization ratio Ldr is a function $\langle \alpha \rangle = 0$ of particle orientations whereas circular depolarization ratio CDR is not

> Cdr can be approximately estimated from Zdr and ρ_{hν} (Ryzhkov et al. 2017)

The width of the canting angle distribution σ can be estimated from the combination of Ldr, Zdr, and ρ_{hv}

$$
\sigma(\text{deg}) = \frac{180}{\pi} \frac{L_{dr}^{1/2}}{(1 + Z_{dr}^{-1} - 2\rho_{hv} Z_{dr}^{-1/2})^{1/2}}
$$

Ldr and Zdr are expressed in linear scale

QVP SPOL 20111127 00:00-23:59 UTC

Vertical profiles of Z_{DR} and σ

DGL – dendritic growth layer FL – freezing level

The orientation spread σ is highly variable and may increase by a factor of 2 as a result of snow aggregation.