Evaluation of TerrSysMP with Radar Polarimetry – Bonn Radar Domain

Aachen

Luxemborg

Dusseldorf

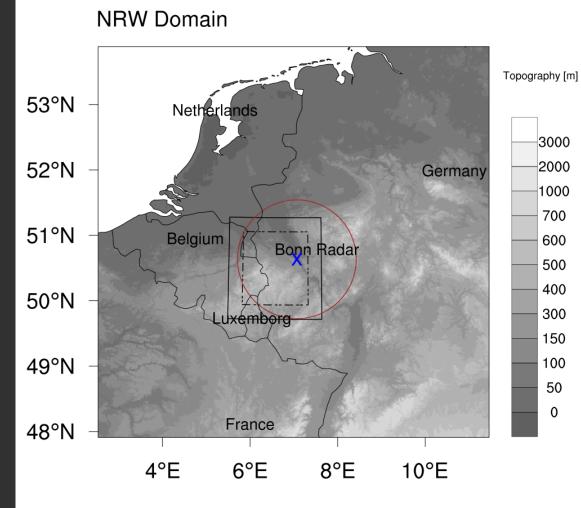
Cologne

Koblenz

Bonn Radar

Prabhakar Shrestha

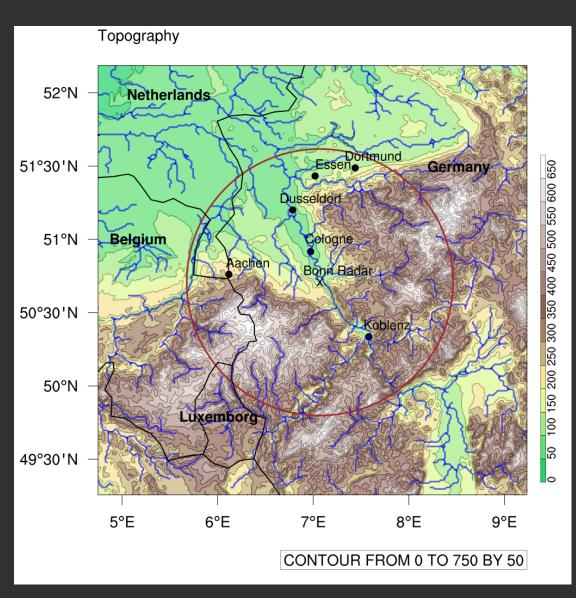
ILACPR/PROM e-mail: pshrestha@uni-bonn.de


Belgium

About ILACPR

Investigating the impact of Land-use and land-cover change on Aerosol-Cloud-precipitation interactions using Polarimetric Radar retrievals

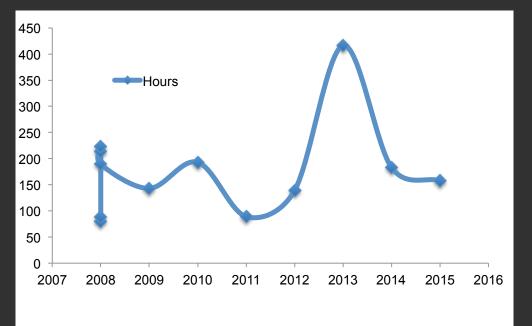
- Project ILACPR contributes to objective one of SPP2115
 - the exploitation of radar polarimetry for quantitative process and model evaluation
- Focus on the impact of anthropogenic land-use and land-cover changes on cloud microphysical and macrophysical (dynamical) mechanisms.
 - Preliminary study show that "Response of the system in terms of surface precipitation for the forcing is weak – however – pathways of microphysical/macrophysical processes reflecting the polarimetric radar signatures vary"
- First year focus mainly on evaluation of simulated and measured radar polarimetric signatures
 - Bonn Radar Domain
 - mainly BoxPol measurements
 - Polarimteric Forward Operator applied to TerrSysMP outputs

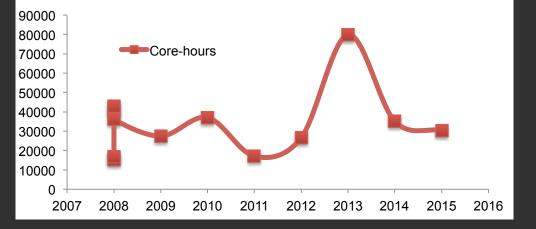

Bonn Radar Domain

Grid Description

- Δ_x ~ 1.132 km (0.1°)
- Horizontal Extent ~ 332 x 332 km
- Encompasses the Bonn Radar extent excluding the relaxation zone
- Double the extent of NRW domain (Shrestha et al. 2014)

Bonn Radar Domain – Input Data Preparation


Hydrologic Component


- PFT MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 500m SIN Grid V006 (MCD12Q1, 2015), water bodies converted to bare soil
- LAI MODIS Combined Terra and Aqua Leaf Area Index - Fraction of Photosynthetically Active Radiation 8-Day L4 Global 1km (MCD15A2, 2011)
 - Soil Texture
 - Vadose Zone (FAO ~ COSMO specification)
 - Subsurface (IHME1500 aquifer data)
- D4 Slopes COSMO topography and D4 Stream Maps (SRTM topography at $\Delta_x/20$ resolution) with slope smoothing algorithm

Source Codes :

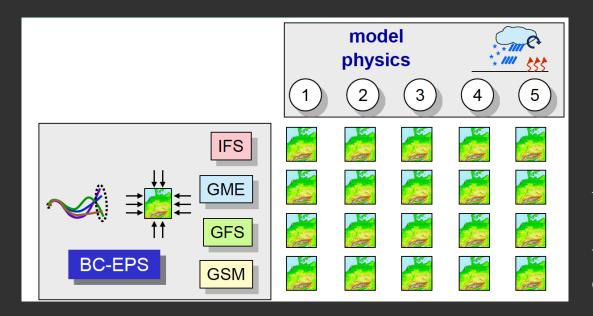
https://git2.meteo.uni-bonn.de/git/tps

Bonn Radar Domain – Initial Conditions

Hydrologic Component

<Spinup>

٠

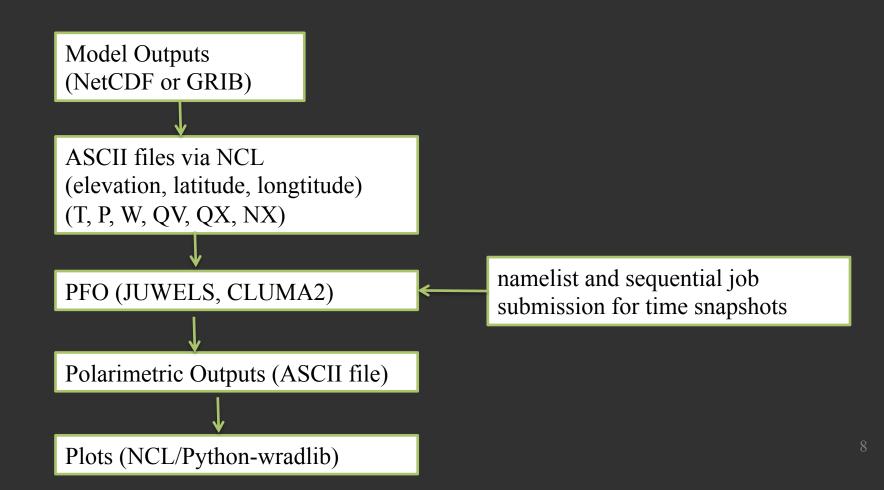

- COSMO-DE analysis data for atmospheric forcing
- Recycling 2008 for 4 years
- Continuous runs from 2008 to 2015
 - 4 years spinup and 8 years of transient run
 - Started: Feb 26 2019
 - JUWELS (192 cores)
 - 2115 hours of simulation
 - 0.41 million core-hours
 - Slow convergence
 - Insufficient resource allocation
 - Processor and numerical solver optimization
 - Job Queue/ Maintenance

Bonn Radar Domain – Forcing Data Preparation

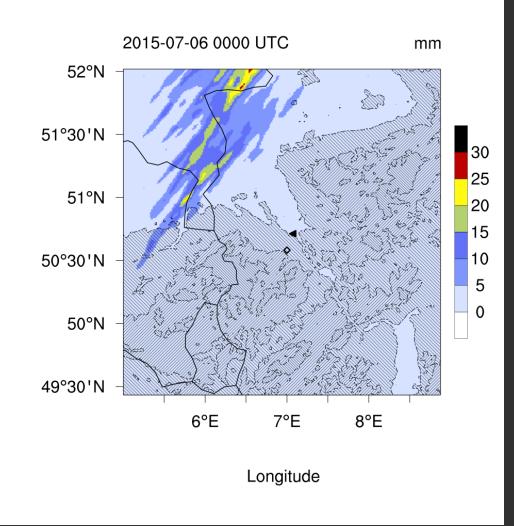
Atmospheric Component

COSMO-DE EPS hourly forecast data with 20 ensemble members

- Ensemble members are generated by randomly perturbing model parameters and lateral forcing using GME, IFS, GFS and GSM
- Lead forecast upto 27 hours
- Lead forecast upto 45 hours for simulation starting at 0300 hours
- Int2Im2.00.2 used to generate initial and boundary condition files


Source: https:// www.ecmwf.int/en/elibrary/ 13851-cosmo-de-eps-newway-predicting-severeconvection

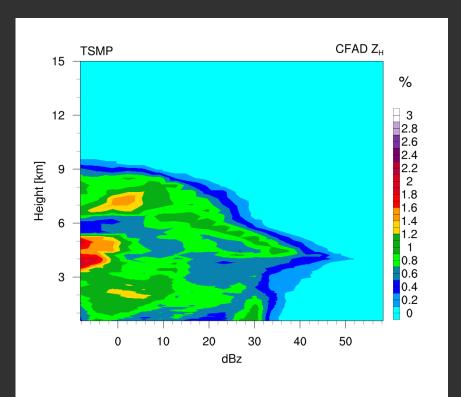
Case Studies


- Selected based on
 - BoxPol Z_h animations
 - May-June-July
 - Starting from 2015
 - Convective Storm Events (Spatial Extent and Duration)
- Selected events
 - 5 July 2015 (Deep convective storm with large hail)
 - 4 June 2016 (Small scale rapidly developing convective storms)
 - 19 July 2017 (Heavy rain mixed with moderate hail)

Polarimetric Forward Operator (PFO)

https://git2.meteo.uni-bonn.de/git/pfo

Ensemble Simulation – Total Accumulated Precipitation



CASE I Model integrated from 2015 4 July 0300 UTC

- Spatial extent and large scale pattern has strong dependence on forcing datasets.
- Variation in magnitudes are dependent on model perturbations used to generate EPS data.

Ensemble Simulation – CFAD

July 5 2015 1540 UTC

- Mismatch in spatial and temporal time-scale of storm evolution.
- Direct comparison with radar measurements becomes challenging.
- Monitor ensemble properties of storm evolution.

CFAD computed over model levels encompassing entire Bonn radar domain excluding relaxation zone.

Summary

- Polarimetric fingerprint comparisons are also ongoing <plotting issues with wradlib library>
- Simulation and analysis are ongoing work with large scale aerosol perturbation and land-use and land-cover change <computational resources and data storage>
- Response of the system to precipitation and ensemble properties of storm is highly sensitive to atmospheric forcing data.

Thank you !

Contact: pshrestha@uni-bonn.de