Spectrally resolved Polarimetric Observation and Modelling 6b61put to 6RD MCC - SPOMCC

PROM Kick-Off Meeting, Bonn, 17-18 October 2018

PI's: Patric Seifert (obs), Oswald Knoth (model)

PhD's: Junghwa Lee, Majid Hajipour

Partners:

- Michael Frech (DWD)
- Herman Russchenberg (TU Delft)
- Alexander Myagkov

"Toward modeling and observing the hydrometeor ratio during the onset of precipitation."

ACCEPT: The prerequisite for the SPOCC project

Analysis of the Composition • of Clouds with Extended Polarization Techniques

- 6-week measurement campaign at CESAR obs., Cabauw
- Vert. pointing LDR-mode Mira-35 (TROPOS)
- Scanning STSR/hybrid-mode Mira-35 (TROPOS/Metek)
- Slanted (45°) full-polarimetric S-band TARA (TU Delft)
 + Lidars, MWR, Doppler lidar, wind profiler, radiosondes, solar radiation measurements

CESAR site, Cabauw, the Netherlands, 7 Oct – 16 Nov 2014

Royal Netherlands Meteorological Institute Ministry of Infrastructure and the Environment **TROPOS**

Analysis of the Composition of ACCEPT Clouds with Extended **Polarization Techniques**

Forster, L., Seefeldner, M., Wiegner, M., and Mayer, B.: Ice crystal characterization in cirrus clouds: a sun-tracking camera system and automated detection algorithm for halo displays, Atmos. Meas. Tech., 10, 2499-2516, https://doi.org/10.5194/amt-10-2499-2017, 2017.

Myagkov, A., Seifert, P., Bauer-Pfundstein, M., and Wandinger, U.: Cloud radar with hybrid mode towards estimation of shape and orientation of ice crystals, Atmos. Meas. Tech., 9, 469-489, https://doi.org/10.5194/amt-9-469-2016, 2016a.

Myagkov, A., Seifert, P., Wandinger, U., Bühl, J., and Engelmann, R.: Relationship between temperature and apparent shape of pristine ice crystals derived from polarimetric cloud radar observations during the ACCEPT campaign, Atmos. Meas. Tech., 9, 3739-3754, https://doi.org/10.5194/amt-9-3739-2016, 2016b.

Rusli, S. P., Donovan, D. P., and Russchenberg, H. W. J.: Simultaneous and synergistic profiling of cloud and drizzle properties using groundbased observations, Atmos. Meas. Tech., 10, 4777-4803, https://doi.org/10.5194/amt-10-4777-2017, 2017.

Pfitzenmaier, L., Y. Dufournet, C.M. Unal, and H.W. Russchenberg, 2017: Retrieving Fall Streaks within Cloud Systems Using Doppler Radar. J. Atmos. Oceanic Technol., 34, 905–920, https://doi.org/10.1175/JTECH-D-16-0117.1

Pfitzenmaier, L., Unal, C. M. H., Dufournet, Y., and Russchenberg, H. W. J.: Observing ice particle growth along fall streaks in mixed-phase clouds using spectral polarimetric radar data, Atmos. Chem. Phys., 18, 7843-7862, https://doi.org/10.5194/acp-18-7843-2018, 2018.

22 case studies of thin, liquid-topped mixed-phase clouds

 \rightarrow Only from the main peak in the Doppler spectrum

TROPOS

Structure of SPOCC

PhD 1: Majid Hajipour

PI: Patric Seifert

Observations

Doppler-velocity-resolved hydrometeor typing from polarimetric radar RHI scans

PhD 1 & PhD 2

Interpretation → Evaluate modelled mixed-phase processes against observations and vice versa Forward-modelling of polarimetric variables from the COSMO-SPECS simulations

Cooperation within PROM (e.g. PICNICC) Modelling PhD 2: Junghwa Lee PI: Oswald Knoth

Spectrally resolved modelling of precipitation formation processes with COSMO-SPECS →Concentrate on mixed-phase cloud schemes

SPOCC – Work Plan

Likely starting date: 1 March 2019

2 PhD projects: PhD 1 \rightarrow Observations PhD2 \rightarrow Modelling PhD1/2 \rightarrow Interpretation

SPOCC – Work Plan

 \rightarrow ZDR and ρ_{hv} from bulk observations

- Training and re-implementation of the technique of Myagkov et al. (2016a)
- Considering new aspects of radar-polarimetric techniques (e.g., the recent works of Sergej Matrosov (apparent density issue), Mariko Oue, and Lukas Pfitzenmaier)

SPOCC – Work Plan – PhD 1 – Task 1.2

 \rightarrow Adaption to German weather radar network

- Test the applicability of the particle shape retrieval to combination of bird-bath scans and 25° elevation.
- Cooperation with Michael Frech (see his project in PROM)

 \rightarrow Toward spectrally resolved hydrometeor ratios

- Adaption of the shape retrieval of Myagkov et al. (2016a) to the full Doppler spectrum
- Challenges:
 - Tracking the spectral signatures over a range of elevation angles
 - Signal-to-noise limitations
 - Incorporate estimates of apparent density
 - → derive actual shapes of different hydrometeor populations
- Includes secondment to TU Delft (Hermann Russchenberg / Christine Unal)

SPOCC – Work Plan

- SPECS (SPEctral Cloud microphysicS), Grützun et al 2008, Simmel et al 2005
- Two spetra (liquid and ice-liquid), additional property aerosol content
- Follow the Spectral Ice Habit Prediction System (SHIPS), Hashino/Tripoli (2007)
- Diagnosing particle growth history for each ice particle bin, "Continuousproperty approach" by allowing solid hydrometeors evolve the properties continuously
- Piecewise linear presentation, after Chen and Lamb 1994
- Improved water vapor deposition
- Suitable mixing rules from last bulk parameterizations

- COSMO-SPECS Simulation by Diehl/Grützun
- Study of different ice nucleation modes at high altitudes
- Covered by an area of 80 km x 80 km
- 48 vertical layers
- Vertical profiles after Weissman/Klemp

Figure 6. Ice formation from contact freezing with 10 % feldspar. (a, b) Temporal development of two parameters shown in a vertical cut through the cloud center. Horizontal dashed lines: temperature in $^{\circ}$ C. (a) Ice water contents in g kg⁻¹ and (b) ice particle numbers per m³. (c) Ice particle size spectra in the center cell of the cloud at different times. Number concentrations per m³. Left pictures in (b) and (c) show primary contact freezing only.

Form parameters for ice shapes, from Jensen et al 2017

Bin representation in SHIPS, from Hishiano/Tripoli 2007

Preparing simulated microphysical data for cloud radar simulator

- CR-SIM (Cloud Resolving Model Radar Simulator), www.radarscience.weebly.com
- PAMTRA
- Starting with data from two moment scheme and one-way refined COSMO runs for the ACCEPT campaign (2.1 km, 700 m, 200 m)

Modelling of the onset of precipitation for mixed-phase clouds

- Starting with data from two moment scheme and one-way refined COSMO runs for the ACCEPT campaign (2.1 km, 700 m, 200 m)
- Improved initial first guesses from additional data obtained during accept
- Simulate special cases with spectral microphysiscs on the finer nests
 - Boundary values from two moment scheme
 - Starting times (cloud free)
- Prepare data for Task 3
- Construction of a cloud test case

SPOCC – Work Plan – PhD 1 & PhD 2 – Task 3.1

 \rightarrow Evaluation of the model setup

- evaluate the representation of macrophysical and thermodynamic properties of clouds in the model against the available observations
- ightarrow Usage of all instrumentation available during ACCEPT
- ightarrow Part of secondment to TU Delft

SPOCC – Work Plan – PhD 1 & PhD 2 – Task 3.2

 \rightarrow Evaluation of microphysical processes

 evaluate the results of different model configurations against the profiles of the hydrometeor ratios obtained from the polarimetric observations

 \rightarrow Test the applicability of ice-process parameterizations

• Estimate from the different model runs, how sensitive the observations need to be for detection of changes in cloud microphysics

